Citation: | JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Numerical simulation of mud inrush of tunnels with coupled LBM-DEM[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1000-1009. DOI: 10.11779/CJGE202106003 |
[1] |
钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. doi: 10.3969/j.issn.1000-6915.2012.10.001
QIAN Qi-hu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.10.001
|
[2] |
李术才, 许振浩, 黄鑫, 等. 隧道突水突泥致灾构造分类、地质判别、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37(5): 1043-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm
LI Shu-cai, XU Zhen-hao, HUANG Xin, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1043-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm
|
[3] |
张志强, 阚呈, 孙飞, 等. 碎屑流地层隧道发生灾变的模型试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2451-2457. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412010.htm
ZHANG Zhi-qiang, KAN Cheng, SUN Fei, et al. Experimental study of catastrophic behavior for tunnel in debris flow strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2451-2457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412010.htm
|
[4] |
张庆松, 王德明, 李术才, 等. 断层破碎带突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703007.htm
ZHANG Qing-song, WANG De-ming, LI Shu-cai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703007.htm
|
[5] |
LIU J Q, CHEN W Z, LIU T G, et al. Effects of initial porosity and water pressure on seepage-erosion properties of water inrush in completely weathered granite[J]. Geofluids, 2018: 1-11.
|
[6] |
张家奇, 李术才, 张庆松, 等. 基于透明土的隧道突泥破坏特征试验研究[J]. 中国公路学报, 2018, 31(10): 177-189. doi: 10.3969/j.issn.1001-7372.2018.10.017
ZHANG Jia-qi, LI Shu-cai, ZHANG Qing-song, et al. Experimental research on destruction characteristics of tunnel mud inrush using transparent soils[J]. China Journal of Highway and Transport, 2018, 31(10): 177-189. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.017
|
[7] |
张庆艳, 陈卫忠, 袁敬强, 等. 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1923. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006015.htm
ZHANG Qing-yan, CHEN Wei-zhong, YUAN Jing-qiang, et al. Experimental study on evolution characteristics of water and mud inrush in fault fractured zone[J]. Rock and Soil Mechanics, 2020, 41(6): 1911-1923. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006015.htm
|
[8] |
王媛, 陆宇光, 倪小东, 等. 深埋隧洞开挖过程中突水与突泥的机理研究[J]. 水利学报, 2011, 42(5): 595-601. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201105015.htm
WANG Yuan, LU Yu-guang, NI Xiao-dong, et al. Study on mechanism of water burst and mud burst in deep tunnel excavation[J]. Journal of Hydraulic Engineering, 2011, 42(5): 595-601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201105015.htm
|
[9] |
ZHAO J D, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239(17): 248-258.
|
[10] |
蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM 耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
|
[11] |
FENG Y T, HAN K, OWEN D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues[J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1111-1134.
|
[12] |
BOUTT D F, COOK B K, MCPHERSON B J O L, et al. Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods[J]. Journal of Geophysical Research, 2007, 112: B10209.
|
[13] |
WANG M, FENG Y T, OWEN D R J, et al. A novel algorithm of immersed moving boundary scheme for fluid-particle interactions in DEM-LBM[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 109-125.
|
[14] |
WANG M, FENG Y T, PANDE G N, et al. A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42: 1405-1424.
|
[15] |
GALINDO-TORRES S A, SCHEUERMANN A, MUHLHAUS H B, et al. A micro-mechanical approach for the study of contact erosion[J]. Acta Geotechnica, 2015, 10: 357-368.
|
[16] |
WANG M, FENG Y T, WANG C. Numerical investigation of initiation and propagation of hydraulic fracture using the coupled bonded particle-lattice Boltzmann method[J]. Computers & Structures, 2017, 181: 32-40.
|
[17] |
BHATNAGAR P L, GROSS E P, KROOK M K. A model for collision processes in gases: I small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
|
[18] |
QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484.
|
[19] |
WANG M, FENG Y T, WANG C Y. Coupled bonded particle and lattice Boltzmann method for modelling fluid-solid interaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(10): 1383-1401.
|
[20] |
WU J, SCHOLTÈS L, TINET A J, et al. A comparative study of three classes of boundary treatment schemes for coupled LBM/DEM simulations[C]//Proceedings of the 7th International Conference on Discrete Element Methods, Springer Proceedings in Physics, 2017: 551-560.
|
[21] |
NOBLE D R, TORCZYNSKI J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201.
|
[22] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
|
[23] |
FENG Z G, MICHAELIDES E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195: 602-628.
|
[24] |
NIU X D, SHU C, CHEW Y T, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J]. Physics Letters A, 2006, 354: 173-182.
|
[25] |
ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9: 1591-1598.
|
[26] |
TANG Y, ZHU D Z, CHAN D H. Experimental study on submerged sand erosion through a slot on a defective pipe[J]. Journal of Hydraulic Engineering, 2017, 143(9): 04017026.1-04017026.14.
|
[27] |
刘成禹, 张翔, 程凯, 等. 地下工程涌水涌砂诱发的沉降试验研究[J]. 岩土力学, 2019, 40(3): 843-851. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903003.htm
LIU Cheng-yu, ZHANG Xiang, CHENG Kai, et al. Experimental study of settlement caused by water and sand inrush in underground engineering[J]. Rock and Soil Mechanics, 2019, 40(3): 843-851. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903003.htm
|
[1] | CUI Wei, WEI Jie, WANG Chao, WANG Xiao-hua, ZHANG She-rong. Discrete element simulation of collapse characteristics of particle column considering gradation and shape[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009 |
[2] | JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage clogging characteristics of rock and soil porous media using LBM-IMB-DEM simulation method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 909-917. DOI: 10.11779/CJGE202105015 |
[3] | JIANG Ming-jing, SUN Ruo-han, LI Tao, YANG Tao, TAN Ya-fei-ou. CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 20-28. DOI: 10.11779/CJGE202001002 |
[4] | LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018 |
[5] | XU Kun, ZHOU Wei, MA Gang, CHANG Xiao-lin, YANG Li-fu. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. DOI: 10.11779/CJGE201805013 |
[6] | ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019 |
[7] | ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023 |
[8] | JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. DOI: 10.11779/CJGE201405001 |
[9] | Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10). |
[10] | ZHANG Hua, LU Yang. Numerical method for retaining structures based on coupled finite difference method and discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1402-1407. |
1. |
肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 .
![]() | |
2. |
杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
![]() | |
3. |
王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 .
![]() | |
4. |
姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
![]() | |
5. |
龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
![]() | |
6. |
王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .
![]() | |
7. |
刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 .
![]() | |
8. |
孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 .
![]() | |
9. |
亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 .
![]() | |
10. |
荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 .
![]() | |
11. |
王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 .
![]() | |
12. |
林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 .
![]() | |
13. |
程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 .
![]() |