• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Numerical simulation of mud inrush of tunnels with coupled LBM-DEM[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1000-1009. DOI: 10.11779/CJGE202106003
Citation: JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Numerical simulation of mud inrush of tunnels with coupled LBM-DEM[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1000-1009. DOI: 10.11779/CJGE202106003

Numerical simulation of mud inrush of tunnels with coupled LBM-DEM

More Information
  • Received Date: September 24, 2020
  • Available Online: December 02, 2022
  • To better understand the catastrophic mechanism of mud inrush disasters of tunnels, a numerical computing platform based on the coupled lattice Boltzmann method-discrete element method (LBM-DEM) is developed and used to simulate the evolution process of mud inrush of tunnels. According to the simulated results, the effects of particle bonding strengths of disaster-causing media, groundwater pressures and sizes of mud inrush holes on the characteristics of mud inrush of tunnels are analyzed. The results show that coupled LBM-DEM simulation can well reproduce the evolution process of four successive stages of mud inrush of tunnels: "starting, accelerating, decelerating and stabilizing". The failure form of unbonded disaster-causing media after mud inrush is approximately straight, whereas the failure form of disaster-causing media with certain bond strength is generally arc or parabolic. The expanded range of failure zone and mud inrush mass both decrease with the increase of the inter-particle bond strength of disaster-causing media. The higher the water pressure is, the faster the mud inrush mass increases after the occurrence of mud inrush disasters, and the more the final mud inrush mass is, which is more remarkable when the inter-particle bond is much stronger. When there is no bond between particles of the disaster-causing media, the models with different sizes of mud inrush holes have basically the same failure zone and mud inrush mass after stabilization. However, when a certain strength of bond is formed between particles, the mud inrush mass increases faster and the final mud inrush mass is more with the increase of the sizes of mud inrush holes. The mud inrush disasters are the result of the combined action of disaster-causing geo-materials, groundwater pressure and tunnel excavation.
  • [1]
    钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. doi: 10.3969/j.issn.1000-6915.2012.10.001

    QIAN Qi-hu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.10.001
    [2]
    李术才, 许振浩, 黄鑫, 等. 隧道突水突泥致灾构造分类、地质判别、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37(5): 1043-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm

    LI Shu-cai, XU Zhen-hao, HUANG Xin, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1043-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm
    [3]
    张志强, 阚呈, 孙飞, 等. 碎屑流地层隧道发生灾变的模型试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2451-2457. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412010.htm

    ZHANG Zhi-qiang, KAN Cheng, SUN Fei, et al. Experimental study of catastrophic behavior for tunnel in debris flow strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2451-2457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412010.htm
    [4]
    张庆松, 王德明, 李术才, 等. 断层破碎带突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703007.htm

    ZHANG Qing-song, WANG De-ming, LI Shu-cai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703007.htm
    [5]
    LIU J Q, CHEN W Z, LIU T G, et al. Effects of initial porosity and water pressure on seepage-erosion properties of water inrush in completely weathered granite[J]. Geofluids, 2018: 1-11.
    [6]
    张家奇, 李术才, 张庆松, 等. 基于透明土的隧道突泥破坏特征试验研究[J]. 中国公路学报, 2018, 31(10): 177-189. doi: 10.3969/j.issn.1001-7372.2018.10.017

    ZHANG Jia-qi, LI Shu-cai, ZHANG Qing-song, et al. Experimental research on destruction characteristics of tunnel mud inrush using transparent soils[J]. China Journal of Highway and Transport, 2018, 31(10): 177-189. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.017
    [7]
    张庆艳, 陈卫忠, 袁敬强, 等. 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1923. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006015.htm

    ZHANG Qing-yan, CHEN Wei-zhong, YUAN Jing-qiang, et al. Experimental study on evolution characteristics of water and mud inrush in fault fractured zone[J]. Rock and Soil Mechanics, 2020, 41(6): 1911-1923. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006015.htm
    [8]
    王媛, 陆宇光, 倪小东, 等. 深埋隧洞开挖过程中突水与突泥的机理研究[J]. 水利学报, 2011, 42(5): 595-601. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201105015.htm

    WANG Yuan, LU Yu-guang, NI Xiao-dong, et al. Study on mechanism of water burst and mud burst in deep tunnel excavation[J]. Journal of Hydraulic Engineering, 2011, 42(5): 595-601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201105015.htm
    [9]
    ZHAO J D, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239(17): 248-258.
    [10]
    蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM 耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm

    JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
    [11]
    FENG Y T, HAN K, OWEN D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues[J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1111-1134.
    [12]
    BOUTT D F, COOK B K, MCPHERSON B J O L, et al. Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods[J]. Journal of Geophysical Research, 2007, 112: B10209.
    [13]
    WANG M, FENG Y T, OWEN D R J, et al. A novel algorithm of immersed moving boundary scheme for fluid-particle interactions in DEM-LBM[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 109-125.
    [14]
    WANG M, FENG Y T, PANDE G N, et al. A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42: 1405-1424.
    [15]
    GALINDO-TORRES S A, SCHEUERMANN A, MUHLHAUS H B, et al. A micro-mechanical approach for the study of contact erosion[J]. Acta Geotechnica, 2015, 10: 357-368.
    [16]
    WANG M, FENG Y T, WANG C. Numerical investigation of initiation and propagation of hydraulic fracture using the coupled bonded particle-lattice Boltzmann method[J]. Computers & Structures, 2017, 181: 32-40.
    [17]
    BHATNAGAR P L, GROSS E P, KROOK M K. A model for collision processes in gases: I small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
    [18]
    QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484.
    [19]
    WANG M, FENG Y T, WANG C Y. Coupled bonded particle and lattice Boltzmann method for modelling fluid-solid interaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(10): 1383-1401.
    [20]
    WU J, SCHOLTÈS L, TINET A J, et al. A comparative study of three classes of boundary treatment schemes for coupled LBM/DEM simulations[C]//Proceedings of the 7th International Conference on Discrete Element Methods, Springer Proceedings in Physics, 2017: 551-560.
    [21]
    NOBLE D R, TORCZYNSKI J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201.
    [22]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [23]
    FENG Z G, MICHAELIDES E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195: 602-628.
    [24]
    NIU X D, SHU C, CHEW Y T, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J]. Physics Letters A, 2006, 354: 173-182.
    [25]
    ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9: 1591-1598.
    [26]
    TANG Y, ZHU D Z, CHAN D H. Experimental study on submerged sand erosion through a slot on a defective pipe[J]. Journal of Hydraulic Engineering, 2017, 143(9): 04017026.1-04017026.14.
    [27]
    刘成禹, 张翔, 程凯, 等. 地下工程涌水涌砂诱发的沉降试验研究[J]. 岩土力学, 2019, 40(3): 843-851. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903003.htm

    LIU Cheng-yu, ZHANG Xiang, CHENG Kai, et al. Experimental study of settlement caused by water and sand inrush in underground engineering[J]. Rock and Soil Mechanics, 2019, 40(3): 843-851. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903003.htm
  • Related Articles

    [1]CUI Wei, WEI Jie, WANG Chao, WANG Xiao-hua, ZHANG She-rong. Discrete element simulation of collapse characteristics of particle column considering gradation and shape[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009
    [2]JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage clogging characteristics of rock and soil porous media using LBM-IMB-DEM simulation method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 909-917. DOI: 10.11779/CJGE202105015
    [3]JIANG Ming-jing, SUN Ruo-han, LI Tao, YANG Tao, TAN Ya-fei-ou. CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 20-28. DOI: 10.11779/CJGE202001002
    [4]LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018
    [5]XU Kun, ZHOU Wei, MA Gang, CHANG Xiao-lin, YANG Li-fu. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. DOI: 10.11779/CJGE201805013
    [6]ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
    [7]ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023
    [8]JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. DOI: 10.11779/CJGE201405001
    [9]Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [10]ZHANG Hua, LU Yang. Numerical method for retaining structures based on coupled finite difference method and discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1402-1407.
  • Cited by

    Periodical cited type(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 .
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 .
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 .
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 .
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    Other cited types(5)

Catalog

    Article views (250) PDF downloads (398) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return