• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Kun, ZHOU Wei, MA Gang, CHANG Xiao-lin, YANG Li-fu. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. DOI: 10.11779/CJGE201805013
Citation: XU Kun, ZHOU Wei, MA Gang, CHANG Xiao-lin, YANG Li-fu. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. DOI: 10.11779/CJGE201805013

Review of particle breakage simulation based on DEM

More Information
  • Revised Date: February 03, 2017
  • Published Date: May 24, 2018
  • Particle breakage has a significant effect on the macro- and micro-mechanical behaviors of granular assemblies. The development of micro-scale researches on particle breakage based on physical experiments is limited by the current experimental techniques. An efficient way is provided to investigate the effect of particle breakage on the behavior of granular assemblies from different scales with the proposed discrete element method (DEM). The worldwide researches are reviewed, and two kinds of particle breakage simulation methods based on DEM are introduced, namely the particle breakage simulation methods based on the bonded-particle model (BPM) and based on the fragment replacement method (FRM). The distinct problems for the particle breakage simulation method based on BPM are that it is not suitable for a large-scale numerical simulation and has a limited breakage level. Two key points, the fragment replacement mode and the particle breakage criterion, should be considered when using the particle breakage simulation method based on FRM. The fragment number, size distribution and law of mass conservation strategies of fragment replacement mode are discussed as well as the stress criterion and force criterion for particle breakage. The possible research emphasis in the field of particle breakage simulation method based on DEM is proposed.
  • [1]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [2]
    BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.
    [3]
    郭熙灵, 胡 辉, 包承纲. 堆石料颗粒破碎对剪胀性及抗剪强度的影响[J]. 岩土工程学报, 1997, 19(3): 86-91. (GUO Xi-ling, HU Hui, BAO Cheng-gang. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rock fill[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 86-91. (in Chinese))
    [4]
    汪 稔, 孙吉主. 钙质砂不排水性状的损伤-滑移耦合作用分析[J]. 水利学报, 2002, 7(7): 75-78. (WANG Ren, SUN Ji-zhu. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 2002, 7(7): 75-78. (in Chinese))
    [5]
    刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566. (LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese))
    [6]
    魏 松, 朱俊高. 粗粒料三轴湿化颗粒破碎试验研究[J]. 岩石力学与工程学报, 2006, 25(6): 1252-1258. (WEI Song, ZHU Jun-gao. Study on wetting breakage of coarse-grained materials in triaxial test[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1252-1258. (in Chinese))
    [7]
    井国庆, 封 坤, 高 亮, 等. 循环荷载作用下道砟破碎老化的离散元仿真[J]. 西南交通大学学报, 2012, 47(2): 187-191. (JING Guo-qing, FENG Kun, GAO Liang, et al. DEM simulation of ballast degradation and breakage under cyclic loading[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 187-191. (in Chinese))
    [8]
    INDRARATNA B, LACKENBY J, CHRISTIE D. Effect of confining pressure on the degradation of ballast under cyclic loading[J]. Géotechnique, 2005, 55(4): 325-328.
    [9]
    陈生水, 霍家平, 章为民. “ 5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. (CHEN Sheng-shui, HUO Jia-ping, ZHANG Wei-min. Analysis of effects of “5.12” Wenchuan Earthquake on Zipingpu Concrete Face Rock-fill Dam[J]. Chinese Journal of Geotechnical Engineering , 2008, 30(6): 795-801. (in Chinese))
    [10]
    COOP M R, LEE I K. The behaviour of granular soils at elevated stresses: predictive soil mechanics[C]// Proceedings of Wroth Memorial Symposium. London, 1993: 186-198.
    [11]
    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679.
    [12]
    张家铭, 汪 稔, 张阳明, 等. 土体颗粒破碎研究进展[J] .岩土力学, 2003, 24(增刊1): 661-665. (ZHANG Jia-ming, WANG Ren, ZHANG Yang-ming, et al. Advance in studies of soil grain crush[J]. Rock and Soil Mechanics, 2003, 24(S1): 661-665. (in Chinese))
    [13]
    刘汉龙, 孙逸飞, 杨 贵, 等. 粗粒料颗粒破碎特性研究述评[J]. 河海大学学报: 自然科学版, 2012, 40(4): 361-369. (LIU Han-long, SUN Yi-fei, YANG Gui, et al. A review of particle breakage characteristics of coarse aggregates[J]. Journal of Hohai University: Natural Sciences, 2012, 40(4): 361-369. (in Chinese))
    [14]
    KH A B, MIRGHASEMI A A, MOHAMMADI S. Numerical simulation of particle breakage of angular particles using combined DEM and FEM[J]. Powder Technology, 2011, 205(1): 15-29.
    [15]
    MA G, ZHOU W, CHANG X L, et al. A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method[J]. Granular Matter, 2016, 18(1): 1-17.
    [16]
    MA G, ZHOU W, CHANG X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014, 61: 132-143.
    [17]
    LOBO-GUERRERO S, VALLEJO L E. Discrete element method analysis of railtrack ballast degradation during cyclic loading[J]. Granular Matter, 2006, 8(3/4): 195-204.
    [18]
    MCDOWELL G R, DE BONO J P. On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63(11): 895-908.
    [19]
    刘 君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟[J]. 岩土力学, 2008, 29(增刊): 107-112. (LIU Jun, LIU Fu-hai, KONG Xian-jing. Particle flow code numerical simulation of particle breakage of rockfill[J]. Rock and Soil Mechanics, 2008, 29(S0): 107-112. (in Chinese))
    [20]
    姜 浩, 徐 明. 碎石料应力路径大型三轴试验的离散元模拟研究[J]. 工程力学, 2014, 31(10): 151-157. (JIANG Hao, XU Ming. Study of stress-path-dependent behavior of rockfills using discrete element method[J]. Engineering Mechanics, 2014, 31(10): 151-157. (in Chinese))
    [21]
    邵 磊, 迟世春, 张 勇, 等. 基于颗粒流的堆石料三轴剪切试验研究[J]. 岩土力学, 2013, 34(3): 711-720. (SHAO Lei, CHI Shi-chun, ZHANG Yong, et al. Study of triaxial shear tests for rockfill based on particle flow code[J]. Rock and Soil Mechanics, 2013, 34(3): 711-720. (in Chinese))
    [22]
    ZHOU W, YANG L, MA G, et al. DEM analysis of the size effects on the behavior of crushable granular materials[J]. Granular Matter, 2016, 18(3): 1-11.
    [23]
    CIL M B, ALSHIBLI K A. 3D evolution of sand fracture under 1D compression[J]. Géotechnique, 2014, 64(5): 351-364.
    [24]
    CIL M B, BUSCARNERA G. DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils[J]. Granular Matter, 2016, 18(3): 1-15.
    [25]
    DRUCKREY A M, ALSHIBLI K A. 3D finite element modeling of sand particle fracture based on in situ X‐Ray synchrotron imaging[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(1): 105-116.
    [26]
    罗 滔, OOI E T, CHAN A H C, 等. 一种模拟堆石料颗粒破碎的离散元-比例边界有限元结合法[J]. 岩土力学, 2017(5): 883-892. (LUO Tao, OOI E T, CHAN A H C, et al. A combined DEM-SBFEM for particle breakage modelling of rock-fill materials[J]. Rock and Soil Mechanics, 2017(5): 883-892. (in Chinese))
    [27]
    MCDOWELL G R, HARIRECHE O. Discrete element modelling of soil particle fracture[J]. Géotechnique, 2002, 52(2): 131-136.
    [28]
    MCDOWELL G R, HARIRECHE O. Discrete element modelling of yielding and normal compression of sand[J]. Géotechnique, 2002, 52(4): 299-304.
    [29]
    CHENG Y P, NAKATA Y, BOLTON M D. Discrete element simulation of crushable soil[J]. Géotechnique, 2003, 53(7): 633-642.
    [30]
    CHENG Y P, BOLTON M D, NAKATA Y. Grain crushing and critical states observed in DEM simulations[C]// Proceedings of the 5th International Conference on Micromecnanics of Granular Media. Stuttgart, 2005, 2: 1393-1397.
    [31]
    LIM W L, MCDOWELL G R. Discrete element modelling of railway ballast[J]. Granular Matter, 2005, 7(1): 19-29.
    [32]
    LU M, MCDOWELL G R. Discrete element modelling of ballast abrasion[J]. Géotechnique, 2006, 56(9): 651-655.
    [33]
    LU M, MCDOWELL G R. Discrete element modelling of railway ballast under triaxial conditions[J]. Geomechanics and Geoengineering: An International Journal, 2008, 3(4): 257-270.
    [34]
    史旦达, 周 健, 贾敏才, 等. 考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J]. 岩土工程学报, 2007, 29(5): 736-742. (SHI Dan-da, ZHOU Jian, JIA Min-cai, et al. Numerical simulations of particle breakage property of sand under high pressure 1D compression condition by use of particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742. (in Chinese))
    [35]
    BOLTON M D, NAKATA Y, CHENG Y P. Micro-and macro-mechanical behaviour of DEM crushable materials[J]. Géotechnique, 2008, 58(6): 471-480.
    [36]
    CIL M B, ALSHIBLI K A. 3D assessment of fracture of sand particles using discrete element method[J]. Géotechnique Letters, 2012, 2(3): 161-166.
    [37]
    ALONSO E E, TAPIAS M, GILI J. Scale effects in rockfill behaviour[J]. Géotechnique Letters, 2012, 2(3): 155-160.
    [38]
    WANG J, YAN H. On the role of particle breakage in the shear failure behavior of granular soils by DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 832-854.
    [39]
    ÅSTRÖM J A, HERRMANN H J. Fragmentation of grains in a two-dimensional packing[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 1998, 5(3): 551-554.
    [40]
    TSOUNGUI O, VALLET D, CHARMET J C. Numerical model of crushing of grains inside two-dimensional granular materials[J]. Powder Technology, 1999, 105(1): 190-198.
    [41]
    MARKETOS G, BOLTON M D. Compaction bands simulated in discrete element models[J]. Journal of Structural Geology, 2009, 31(5): 479-490.
    [42]
    BEN-NUN O, EINAV I. The role of self-organization during confined comminution of granular materials[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010, 368(1910): 231-247.
    [43]
    BROSH T, KALMAN H, LEVY A. Fragments spawning and interaction models for DEM breakage simulation[J]. Granular Matter, 2011, 13(6): 765-776.
    [44]
    DE BONO J P, MCDOWELL G R. DEM of triaxial tests on crushable sand[J]. Granular Matter, 2014, 16(4): 551-562.
    [45]
    ZHOU W, YANG L, MA G, et al. Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509.
    [46]
    CIANTIA M, ARROYO ALVAREZ DE TOLEDO M, CALVETTI F, et al. An approach to enhance efficiency of DEM modelling of soils with crushable grains[J]. Géotechnique, 2015, 65(2): 91-110.
    [47]
    杨 贵, 许建宝, 刘昆林. 粗粒料颗粒破碎数值模拟研究[J]. 岩土力学, 2015, 36(11): 3301-3306. (YANG Gui, XU Jian-bao, LIU Kun-lin. Numerical simulation of particle breakage of coarse aggregates[J]. Rock and Soil Mechanics, 2015, 36(11): 3301-3306. (in Chinese))
    [48]
    THORNTON C, YIN K K, ADAMS M J. Numerical simulation of the impact fracture and fragmentation of agglomerates[J]. Journal of Physics D: Applied Physics, 1996, 29(2): 424-435.
    [49]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [50]
    DE BONO J P, MCDOWELL G R. Investigating the effects of particle shape on normal compression and over consolidation using DEM[J]. Granular Matter, 2016, 18(3): 1-10.
    [51]
    CLARKE D R, FABER K T. Fracture of ceramics and glasses[J]. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1115-1157.
    [52]
    LI Y S, DUXBURY P M. From moduli scaling to breakdown scaling: A moment-spectrum analysis[J]. Physical Review B, 1989, 40(7): 4889.
    [53]
    LOBO-GUERRERO S, VALLEJO L E. Analysis of crushing of granular material under isotropic and biaxial stress conditions[J]. Soils and Foundations, 2005, 45(4): 79-87.
    [54]
    LOBO-GUERRERO S, VALLEJO L E. Crushing a weak granular material: experimental numerical analyses[J]. Géotechnique, 2005, 55(3): 245-249.
    [55]
    TSOUNGUI O, VALLET D, CHARMET J C. Numerical model of crushing of grains inside two-dimensional granular materials[J]. Powder Technology, 1999, 105(1): 190-198.
    [56]
    NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82.
    [57]
    BEN-NUN O, EINAV I. A refined DEM study of grain size reduction in uniaxial compression[C]// Proceedings of the 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, 2008: 702-708.
    [58]
    RUSSELL A R, WOOD D M. Point load tests and strength measurements for brittle spheres[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 272-280.
    [59]
    RUSSELL A R, WOOD D M, KIKUMOTO M. Crushing of particles in idealised granular assemblies[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1293-1313.
    [60]
    DE BONO J P, MCDOWELL G R. Particle breakage criteria in discrete element modelling[J]. Géotechnique, 2016. doi: 10.1680/jgeot.15.P.280
    [61]
    SUKUMARAN B, EINAV I. DYSKIN A V. Qualitative assessment of the influence of coordination number on crushing strength using DEM[C]// Proceeding of the Fifth World Congress on Particle Technology. Florida, 2006.
    [62]
    TAKEI M, KUSAKABE O, HAYASHI T. Time-dependent behavior of crushable materials in one-dimensional compression tests[J]. Soils and Foundations, 2001, 41(1): 97-121.
  • Cited by

    Periodical cited type(40)

    1. 梁绍敏,冯云田,赵婷婷,王志华. 颗粒材料破碎行为数值分析方法研究综述. 力学学报. 2024(01): 1-22 .
    2. 韩超,俞越中,柏彬,徐志豪,张献蒙,刘寅莹,孔硕颖. 考虑颗粒破碎的固化泥粒-砂土混合填料压缩特性研究. 中外公路. 2024(02): 119-129 .
    3. 肖源杰,侯可,华文俊,王小明,杨涛,王萌,陈宇亮,周震,孟凡威. 建筑固废再生骨料单颗粒压碎试验与近场动力学模拟. 中南大学学报(自然科学版). 2024(09): 3368-3383 .
    4. 汪泾周,马刚,赵婷婷,张文宇,胡锦方,周伟. 基于精确缩尺和粗粒化的颗粒材料FDEM模拟方法. 岩土工程学报. 2024(11): 2371-2379 . 本站查看
    5. 程威顺,余方威,雷震. 基于离散元法的岩石颗粒破碎宏微观力学行为研究. 工程地质学报. 2024(06): 2130-2142 .
    6. 李震,沙潜毅,李金达,郭新宇. 沙柳颗粒在不同破碎程度下致密成型的拱效应. 锻压技术. 2023(02): 111-117 .
    7. 赵飞翔,迟世春. 基于离散元的碎片尺寸随机的颗粒破碎模拟方法. 东北大学学报(自然科学版). 2023(03): 408-414 .
    8. 李洋波,蔡改贫,阮辽. 对辊破碎机对钨矿石的层压破碎特性研究. 工程设计学报. 2023(02): 212-225 .
    9. 郝书灏,蔡改贫,余成,陈慧明. 某矿石准静态加载破碎特性试验与模拟研究. 黄金科学技术. 2023(02): 323-330 .
    10. 崔凯,慈伟,杨尚川. DEM中砂土制样方法对浅基础承载力计算的影响. 西南交通大学学报. 2023(03): 575-583 .
    11. 刘晓义,胡敏,刘大顺. 基于离散元法的砂砾石颗粒破碎特征研究. 低温建筑技术. 2023(12): 24-28 .
    12. 崔溦,魏杰,李国栋. 考虑粗骨料破碎的混凝土力学特性细观模拟. 东南大学学报(自然科学版). 2022(01): 50-56 .
    13. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 .
    14. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
    15. 王晓,薛玉君,程波,刘俊,官志强,李济顺. 基础颗粒数量组合对颗粒黏结模型精度的影响. 河南科技大学学报(自然科学版). 2022(04): 27-33+5 .
    16. 刘波,刘鹏,马刚,杨平荣,王一涵,冷天培. 颗粒形状对粗粒土密实度的影响研究. 人民长江. 2022(04): 155-162+170 .
    17. 孙越,肖杨,周伟,刘汉龙. 钙质砂和石英砂压缩下的颗粒破碎与形状演化. 岩土工程学报. 2022(06): 1061-1068 . 本站查看
    18. 程立朝,郭翔宇,李新旺,屈正一,李文贵. 煤矿矸石充填效果受夯实角影响研究. 中国矿业. 2022(06): 101-108 .
    19. 王晓,薛玉君,程波,刘俊,GUAN Zhi-qiang,李济顺. 基础颗粒粒径对颗粒黏结模型精度的影响. 中国有色金属学报. 2022(05): 1491-1503 .
    20. 刘新明,冯春,林钦栋. 基于连续-非连续单元法的三维脆性颗粒冲击破碎特性分析. 计算力学学报. 2022(03): 299-306 .
    21. 肖宇轩,马刚,陆希,周伟,王頔,苗泽锴. 堆石颗粒在复杂约束模式的破碎特性. 浙江大学学报(工学版). 2022(08): 1514-1522+1559 .
    22. 周伟,马刚,安妮,林明春,常晓林. 高堆石坝变形监测和变形预测关键技术及工程应用. 水利规划与设计. 2022(11): 54-60 .
    23. 王东,郭富宁,贾兰,徐晓惠. 基于CDEM露天煤矿顺倾软岩边坡三维稳定性分析. 安全与环境学报. 2021(01): 195-200 .
    24. 董宗磊,童晨曦,张升,盛岱超. 粗粒土颗粒破碎的级配转移矩阵研究. 岩石力学与工程学报. 2021(07): 1504-1512 .
    25. 王晓,薛玉君,刘俊,杨纪昌,邹声勇,Zhiqiang GUAN,李济顺. 基于落重试验的离散元多颗粒黏结建模技术. 中国有色金属学报. 2021(08): 2258-2268 .
    26. 郑鸿超,石振明,彭铭,周圆媛. 崩滑碎屑体堵江成坝研究综述与展望. 工程科学与技术. 2020(02): 19-28 .
    27. 张村,赵毅鑫,屠世浩,张通. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究. 岩土工程学报. 2020(04): 696-704 . 本站查看
    28. 于际都,沈超敏,刘斯宏. 染色石膏颗粒一维压缩破碎与粒径迁移. 岩石力学与工程学报. 2020(05): 1071-1079 .
    29. 徐琨,周伟,马刚. 颗粒破碎对堆石料填充特性缩尺效应的影响研究. 岩土工程学报. 2020(06): 1013-1022 . 本站查看
    30. 蔡改贫,宣律伟,张雪涛,郭晋. 多尺度内聚颗粒模型破碎过程研究. 岩土力学. 2020(06): 1809-1817 .
    31. 孟敏强,王磊,蒋翔,汪成贵,刘汉龙,肖杨. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟. 岩土力学. 2020(09): 2953-2962 .
    32. 宁伏龙,窦晓峰,孙嘉鑫,刘志超,李彦龙,李晓东,赵颖杰,刘昌岭,陆红锋,于彦江,李芷,罗强,曹鑫鑫. 水合物开采储层出砂数值模拟研究进展. 石油科学通报. 2020(02): 182-203 .
    33. 吴焕然,刘汉龙,赵吉东,肖杨. 高孔隙率砂岩中破坏模式演化的多尺度分析. 岩土工程学报. 2020(12): 2222-2229 . 本站查看
    34. 张村,赵毅鑫,屠世浩,郝宪杰,郝定溢,刘金保,任赵鹏. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制. 煤炭学报. 2020(S2): 660-670 .
    35. 蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报. 2019(02): 195-254 . 本站查看
    36. 穆海芳,何康,韩君,李明. 基于离散元法的球磨机介质运动的仿真研究. 济宁学院学报. 2019(02): 12-16 .
    37. 周梦佳,温彦锋,邓刚,王蕴嘉,宋二祥. 堆石料单颗粒劈裂试验破碎强度随机性与尺寸效应的三维离散元模拟. 岩土力学. 2019(S1): 503-510 .
    38. 张亚楠,徐琨,周伟,马刚,赖国伟. 离散元团聚体法模拟颗粒破碎的参数影响研究. 中国农村水利水电. 2019(09): 181-186 .
    39. 洪俊,沈月,李建兴,王潇. 发射药粒挤压破碎机理离散元分析(英文). Journal of Southeast University(English Edition). 2019(03): 359-366 .
    40. 徐可,黄文雄,王建敏,张涛,陈丁. 岩质颗粒破碎数值模拟研究进展. 科学技术与工程. 2019(21): 8-14 .

    Other cited types(61)

Catalog

    Article views (897) PDF downloads (557) Cited by(101)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return