• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Kun, ZHOU Wei, MA Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022. DOI: 10.11779/CJGE202006004
Citation: XU Kun, ZHOU Wei, MA Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022. DOI: 10.11779/CJGE202006004

Influence of particle breakage on scale effect of filling characteristics of rockfill material

More Information
  • Received Date: August 04, 2019
  • Available Online: December 07, 2022
  • The filling characteristics of rockfill materials are closely related to their mechanical properties. They can be changed by particle breakage, which is one of the main factors of the scale effect of rockfill materials. It is of great significance to further understand the complex mechanical response and mechanism of scale effect from the perspective of filling properties. A series of numerical triaxial compression tests considering different particle breakage strengths are taken to study the influence of particle breakage on the scale effect of filling characteristics of rockfill materials, and the mechanism of the scale effect is further revealed. It is found that the lower the particle breakage strength, the more obvious the scale effect. The particle breakage has obvious influence on the macro- and micro-parameters of filling characteristics. The porosity decreases with the increasing sample size before and after compression tests, which is more significant with the lower particle breakage strength. The effective porosity of samples with the same size after compression tests decreases with the lower particle breakage strength. The effective porosity of samples before compression tests increases with the increasing sample size, which is opposite to the trend after compression tests. During the process of compression tests, the larger samples produce more mechanical unstable particles than smaller ones, which is one of the reasons for the scale effect of rockfill materials.
  • [1]
    郦能惠. 高混凝土面板堆石坝新技术[M]. 北京: 中国水利水电出版社, 2007.

    LI Neng-hui. Recent Technology for High Concrete Face Rockfill Dams[M]. Beijing: China water and Power Press, 2007. (in Chinese)
    [2]
    ALAN BISHOP W, HENKEL D J. The Measurement of Soil Properties in the Triaxial Test[R]. London: Edward Arnold Ltd., 1948.
    [3]
    MARSAL R J. Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43. doi: 10.1061/JSFEAQ.0000958
    [4]
    MARACHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill mechanicals[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1972, 98(1): 95-114.
    [5]
    李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm

    LI Chong, HE Chang-rong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained meterials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm
    [6]
    凌华, 殷宗泽, 朱俊高, 等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报:自然科学版, 2011, 39(5): 540-544. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

    LIN Hua, YIN Zong-ze, ZHU Jun-gao, et al. Experimental study of scale effect on strength of rockfill materials[J]. Journal of Hohai University(Natural Sciences), 2011, 39(5): 540-544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm
    [7]
    朱俊高, 刘忠, 翁厚洋, 等. 试样尺寸对粗粒土强度及变形试验影响研究[J]. 四川大学学报(工程科学版), 2012, 44(6): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201206016.htm

    ZHU Jun-gao, LIU Zhong, WEN Hou-yang, et al. Study on effect of specimen size upon strength and deformation behaviour of coarse-grained soil in triaxial test[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(6): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201206016.htm
    [8]
    武利强, 朱晟, 章晓桦, 等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37(8): 2187-2197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm

    WU Li-qiang, ZHU Sheng, ZHANG Xiao-hua, et al. Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37(8): 2187-2197. (in chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm
    [9]
    VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218. doi: 10.1061/(ASCE)1090-0241(2003)129:3(206)
    [10]
    郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42. doi: 10.3969/j.issn.1000-7709.2001.02.012

    LI Neng-hui, ZHU Tie, MI Zhan-kuan. Strength and deformation properties of transition zone material of Xiaolangdi dam and scale effect[J]. Hydroelectric Energy, 2001, 19(2): 39-42. (in Chinese) doi: 10.3969/j.issn.1000-7709.2001.02.012
    [11]
    王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994, 16(4): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC404.011.htm

    WANG Ji-zhuang. The deformation characteristic and scaling effect of coarse-grained material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC404.011.htm
    [12]
    WEI K M, ZHU S, YU X H. Influence of the scale effect on the mechanical parameters of coarse-grained soils[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2014, 38(C1): 75-84.
    [13]
    花俊杰, 周伟, 常晓林, 等. 堆石体应力变形的尺寸效应研究[J]. 岩石力学与工程学报, 2010, 29(2): 328-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002016.htm

    HUA Jun-jie, ZHOU Wei, CHANG Xiao-lin, et al. Study of scale effect on stress and deformation of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 328-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002016.htm
    [14]
    高莲士, 蔡昌光, 朱家启. 堆石料现场侧限压缩试验解耦K-G模型参数分析方法及在面板坝中的应用[J]. 水力发电学报, 2006, 25(6): 26-33. doi: 10.3969/j.issn.1003-1243.2006.06.005

    GAO Lian-shi, CAI Chang-guang, ZHU Jia-qi. An analysis method for uncoupled K-G model parameters in site confined compression test of rock-fill materials and its application on CFRD[J]. Journal of Hydroelectric Engineering, 2006, 25(6): 26-33. (in Chinese) doi: 10.3969/j.issn.1003-1243.2006.06.005
    [15]
    李凤鸣, 卞富宗. 两种粗粒土的比较试验[J]. 勘察科学技术, 1991(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX199102006.htm

    LI Feng-ming, BIAN Fu-zong. Comparative test of two kinds of coarse-grained soils[J]. Site Investigation Science and Technology, 1991(2): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX199102006.htm
    [16]
    董槐三, 尹承瑶. 天生桥一级水电站面板堆石坝筑坝材料性质研究[J]. 红水河, 1996, 15(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HSHZ604.001.htm

    DONG Huai-san, YIN Cheng-yao. Study of construction material properties for TSQ-I concrete faced rockfill dam[J]. Hong Shui He, 1996, 15(4): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSHZ604.001.htm
    [17]
    朱俊高, 翁厚洋, 吴晓铭, 等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学, 2010, 31(8): 2394-2398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201008008.htm

    ZHU Jun-gao, WENG Hou-yang, WU Xiao-ming, et al. Experimental study of compact density of scaled coarse- grained soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2394-2398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201008008.htm
    [18]
    左永振, 张伟, 潘家军, 等. 粗粒料级配缩尺方法对其最大干密度的影响研究[J]. 岩土力学, 2015, 36(增刊1): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1073.htm

    ZUO Yong-zhen, ZHANG Wei, PAN Jia-jun, et al. Effects of gradation scale method on maximum dry density of coarse-grained soil[J]. Rock and Soil Mechanics, 2015, 36(S1): 417-422. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1073.htm
    [19]
    朱晟, 王永明, 翁厚洋. 粗粒筑坝材料密实度的缩尺效应研究[J]. 岩石力学与工程学报, 2011, 30(2): 348-357. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102020.htm

    ZHU Sheng, WANG Yong-ming, WENG Hou-yang. Study of scale effect of density of coarse-grained dam materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 348-357. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102020.htm
    [20]
    XIAO Y, MENG M, DAOUADJI A, et al. Effect of particle size on crushing and deformation behaviors of rockfill materials[J]. Geoscience Frontiers, 2019. doi: 10.1016/j.gsf.2018.10.010
    [21]
    孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm
    [22]
    OVALLE C, FROSSARD E, DANO C, et al. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica, 2014, 225(8): 2199-2216.
    [23]
    ALONSO E E, TAPIAS M, GILI J. Scale effects in rockfill behaviour[J]. Géotechnique Letters, 2012, 2(3): 155-160.
    [24]
    马刚, 周伟, 常晓林, 等. 堆石料缩尺效应的细观机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2473-2482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212012.htm

    MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. Mesoscopic mechanism study of scale effects of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2473-2482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212012.htm
    [25]
    徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm

    XU Kun, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
    [26]
    MCDOWELL G R, DE BONO J P. On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63(11): 895-908.
    [27]
    DE BONO J P, MCDOWELL G R. DEM of triaxial tests on crushable sand[J]. Granular Matter, 2014, 16(4): 551-562.
    [28]
    WEIBULL W. A statistical theory of the strength of materials[J]. Proceedings of the American Mathematical Society, 1939, 151(5): 1034-1034.
    [29]
    BAZANT Z P. Size effect in blunt fracture: concrete, rock, metal[J]. J Eng Mech, 1984, 110(4): 518-535.
    [30]
    MCDOWELL G R, AMON A. The application of weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141.
    [31]
    LI H, MCDOWELL G, LOWNDES I. Discrete element modelling of a rock cone crusher[J]. Powder Technology, 2014, 263: 151-158.
    [32]
    CIANTIA M, ARROYO Alvarez de Toledo M, CALVETTI F, et al. An approach to enhance efficiency of DEM modelling of soils with crushable grains[J]. Géotechnique, 2015, 65(2): 91-110.
    [33]
    LI G, LIU Y J, DANO C, et al. Grading-dependent behavior of granular materials: from discrete to continuous modeling[J]. Journal of Engineering Mechanics, 2014, 141(6): 04014172.
    [34]
    Itasca Consulting Group Inc. Particle Flow Code in 3 Dimensions (PFC3D) version 5.0[CP]. Minneapolis: Itasca Consulting Inc, 2014: 2199-2216.
    [35]
    TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
    [36]
    ZHOU W, XU K, MA G, et al. Effects of particle size ratio on the macro-and microscopic behaviors of binary mixtures at the maximum packing efficiency state[J]. Granular Matter, 2016, 18(4): 81.
    [37]
    王永明, 朱晟, 任金明, 等. 筑坝粗粒料力学特性的缩尺效应研究[J]. 岩土力学, 2013, 34(6): 1799-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm

    WANG Yong-ming, ZHU Sheng, REN Jin-ming, et al. Research on scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2013, 34(6): 1799-1806. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm
    [38]
    NG T T, ZHOU W, CHANG X L. Effect of particle shape and fine content on the behavior of binary mixture[J]. Journal of Engineering Mechanics, 2016, 143(1): C4016008.
    [39]
    SITHARAM T G, NIMBKAR M S. Micromechanical modelling of granular materials: effect of particle size and gradation[J]. Geotechnical and Geological Engineering, 2000, 18(2): 91-117.
    [40]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50: 43-53.
    [41]
    ROTHENBURG L, KRUYT N P. Critical state and evolution of coordination number in simulated granular materials[J]. International Journal of Solids and Structures, 2004, 41(21): 5763-5774.
    [42]
    ZAMPONI F. Mathematical physics: packings close and loose[J]. Nature, 2008, 453: 606-607.
    [43]
    GU X, HUANG M, QIAN J. DEM investigation on the evolution of microstructure in granular soils under shearing[J]. Granular Matter, 2014, 16(1): 91-106.

Catalog

    Article views (351) PDF downloads (212) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return