• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. DOI: 10.11779/CJGE201902001
Citation: JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. DOI: 10.11779/CJGE201902001

New paradigm for modern soil mechanics: Geomechanics from micro to macro

More Information
  • Received Date: January 23, 2019
  • Published Date: February 24, 2019
  • With the continuous advances in geotechnical engineering practice, especially in deep-underground, deep-sea and deep-space areas (engineering of three-deep-area), geo-engineers are faced with increasingly complex geomaterials and geotechnical environment. Based on the continuum mechanics and phenomenological methodologies, the conventional soil mechanics encounters many difficulties in describing the complicated behavior of soils, such as discontinuous response, large deformation and failure, and the impacts of complex environment. Geomechanics from micro to macro (GM3) starts from particle-scale characterization of soils and upscales to its macroscopic behavior. In this way, the microscopic mechanisms can be revealed to understand the complex behavior of problematic soils. Then the multi-scale theories and methodologies established can promisingly solve the key problems in geomechanics and geotechnical engineering and finally upgrade engineering design level. This paper first highlights the main development of GM3 in the past 40 years. The methodologies, theories, applications of GM3 developed by the worldwide researchers are then introduced, including microscopic behavior of typical soils, microscopic constitutive models, micro-macro bridging and macroscopic constitutive models based on the micro-mechanisms. Various soils are discussed, including clays, structured sands and loesses on the earth, deep-sea methane hydrate bearing sediments, and planetary soils (lunar regolith). The focus is put on the applications and extensions of distinct element method (DEM) in the simulations of problematic geomaterial mechanics and geotechnical engineering on and off shore and in the deep-space. Finally, serveral key challenges and opportunities in GM3 are discussed. By systematically reviewing the above achievements, the paper outlines GM3 framework in order to accelerate the development of research in this area.
  • [1]
    沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.
    (SHEN Zhu-jiang.Theoretical soil mechanics[M]. Beijing: China Water and Power Press, 2000. (in Chinese))
    [2]
    沈珠江. 现代土力学的基本问题[J]. 力学与实践, 1998, 20(6): 1-6.
    (SHEN Zhu-jiang.Fundamental problems in the modern soil mechanics[J]. Mechanics in Engineering, 1998, 20(6): 1-6. (in Chinese))
    [3]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A.Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
    [4]
    DUNCAN J M, CHANG C Y.Nonlinear analysis of stress and strain in soils[J]. Journal of Soil Mechanics and Foundations Division, 1970, 96(SM5): 1629-1653.
    [5]
    MITCHELL J K.Fundamentals of soil behaviour[M]. New York : Wiley, 1976.
    [6]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [7]
    CHANG C S, MA L.A micromechanical-based micropolar theory for deformation of granular solids[J]. International Journal of Solids and Structures, 1991, 28(1): 67-86.
    [8]
    BARDET J P.Observations on the effects of particle rotations on the failure of idealized granular materials[J]. Mechanics of Materials, 1994, 18(2): 159-182.
    [9]
    THORNTON C.Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53.
    [10]
    JIANG M J, HARRIS D, YU H S.Kinematic models for non-coaxial granular materials: Part I theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 643-661.
    [11]
    JIANG M J, LEROUEIL S, KONRAD J M.Insight into shear strength functions of unsaturated granulates by DEM analyses[J]. Computers and Geotechnics, 2004, 31(6): 473-489.
    [12]
    JIANG M J, YU H S, HARRIS D.A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [13]
    JIANG M J, YU H S, HARRIS D.Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 723-761.
    [14]
    SHI G H.Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block systems [D]. Berkeley: University of California, 1988.
    [15]
    ALDER B J, WAINWRIGHT T E.Phase transition for a hard sphere system[J]. Journal of Chemical Physics, 1957, 27(5): 1208-1209.
    [16]
    SANDEEP C S, HE H, SENETAKIS K.An experimental micromechanical study of sand grain contacts behavior from different geological environments[J]. Engineering Geology, 2018, 246: 176-186.
    [17]
    赵古田. 固液界面双电层结构的理论与实验研究[D]. 南京: 东南大学, 2014.
    (ZHAO Gu-tian.Theoretical and experimental study on electric double layer structure near solid-liquid interface [D]. Nanjing: Southeast University, 2014. (in Chinese))
    [18]
    JIANG M J, SUN Y G, LI L Q, et al.Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation[J]. Mechanics of Materials, 2012, 55(14): 1-15.
    [19]
    蒋明镜, 金树楼, 刘蔚, 等. 粒间胶结接触力学特性的三维试验研究[J]. 岩土力学, 2015, 36(增刊1): 9-13.
    (JIANG Ming-jing, JIN Shu-lou, LIU Wei, et al.Three-dimensional experimental study of mechanical behaviors of bonded granules[J]. Rock and Soil Mechanics, 2015, 36(S1): 9-13. (in Chinese))
    [20]
    ZHAO B D, WANG J F, COOP M R, et al.An investigation of single sand particle fracture using X-ray micro-tomography[J]. Géotechnique, 2015, 65(8): 625-641.
    [21]
    MOLLON G, ZHAO J D.Generating realistic 3d sand particles using fourier descriptors[J]. Granular Matter, 2013, 15(1): 95-108.
    [22]
    LI X, YANG D, YU H S.Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes[J]. Granular Matter, 2016, 18(3): 53.
    [23]
    JIANG M J, SHEN Z F, WANG J F.A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163.
    [24]
    FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems: I exact scaling laws[J]. Computational Particle Mechanics, 2014, 1(2): 159-168.
    [25]
    JIANG M J, KONRAD J M, LEROUEIL S.An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(5): 579-597.
    [26]
    KATSUKI S, ISHIKAWA N, OHIRA Y, et al.Shear strength of rod material[J]. Journal of Civil Engineering, 1989, 410(8): 1-12. (in Japanese)
    [27]
    ROTHENBURG L, BATHURST R J.Micromechanical features of granular assemblies with planar elliptical particles[J]. Géotechnique, 1992, 42(1): 79-95.
    [28]
    CIANTIA M O, BOSCHI K, SHIRE T, et al.Numerical techniques for fast generation of large discrete-element models[J]. Engineering and Computational Mechanics, 2018: 1-15.
    [29]
    CUNDALL P A.Computer simulations of dense sphere assemblies[J]. Studies in Applied Mechanics, 1988, 20: 113-123.
    [30]
    THORNTON C, CUMMINS S J, CLEARY P W.An investigation of the comparative behaviour of alternative contact force models during inelastic collisions[J]. Powder Technology, 2013, 233: 30-46.
    [31]
    JIANG M J, LEROUEIL S, ZHU H H, et al.Two-dimensional discrete element theory for rough particles[J]. International Journal of Geomechanics, 2009, 9(1): 20-33.
    [32]
    LI T, JIANG M J, THORNTON C.Three-dimensional discrete element analysis of triaxial tests and wetting tests on unsaturated compacted silt[J]. Computers and Geotechnics, 2018, 97: 90-102.
    [33]
    JIANG M J, SHEN Z F, THORNTON C.Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116.
    [34]
    LU N, ANDERSON M T, LIKOS W J, et al.A discrete element model for kaolinite aggregate formation during sedimentation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 965-980.
    [35]
    POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [36]
    POTYONDY D O.Parallel-bond refinements to match macroproperties of hard rock[C]// Proceedings of Second Internationl FLAC/DEM Symposium. Melbourne, 2011.
    [37]
    DING X, ZHANG L.A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 111-119.
    [38]
    MA Y F, HUANG H Y.A displacement-softening contact model for discrete element modeling of quasi-brittle materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 9-19.
    [39]
    BRENDEL L, TÖRÖK J, KIRSCH R, et al. A contact model for the yielding of caked granular materials[J]. Granular Matter, 2011, 13(6): 777-786.
    [40]
    BROWN N J, CHEN J F, OOI J Y.A bond model for DEM simulation of cementitious materials and deformable structures[J]. Granular Matter, 2014, 16(3): 299-311.
    [41]
    JIANG M J, ZHANG N, CUI L, et al.A size-dependent bond failure criterion for cemented granules based on experimental studies[J]. Computers and Geotechnics, 2015, 69: 182-198.
    [42]
    JIANG M J, LIU F, ZHOU Y P.A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(18): 1871-1897.
    [43]
    SHEN Z F, JIANG M J, WAN R.Numerical study of inter-particle bond failure by 3D discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 523-545.
    [44]
    WANG H N, GONG H, LIU F, et al.Size-dependent mechanical behavior of an intergranular bond revealed by an analytical model[J]. Computers and Geotechnics, 2017, 89: 153-167.
    [45]
    JIANG M J, CHEN H, CROSTA G B.Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 175-189.
    [46]
    JIANG M J, JIANG T, CROSTA G B, et al.Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model[J]. Engineering Geology, 2015, 193: 79-96.
    [47]
    SHEN Z F, JIANG M J, THORNTON C.DEM simulation of bonded granular material: Part I contact model and application to cemented sand[J]. Computers and Geotechnics, 2016, 75: 192-209.
    [48]
    李涛, 蒋明镜, 张鹏. 非饱和结构性黄土侧限压缩和湿陷试验三维离散元分析[J]. 岩土工程学报, 2018, 40(增刊1): 39-44.
    (LI Tao, JIANG Ming-jing, ZHANG Peng.DEM analyses of oedometer and wetting tests on unsaturated structured loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 39-44. (in Chinese)).
    [49]
    TSUJI Y, KAWAGUCHI T, TANAKA T.Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87.
    [50]
    EL SHAMY U, ZEGHAL M.Coupled continuum-discrete model for saturated granular soils[J]. Journal of Engineering Mechanics, 2005, 131(4): 413-426.
    [51]
    POTAPOV A V, HUNT M L, CAMPBELL C S.Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method[J]. Powder Technology, 2001, 116(2): 204-213.
    [52]
    TAN H, CHEN S.A hybrid DEM-SPH model for deformable landslide and its generated surge waves[J]. Advances in Water Resources, 2017, 108: 256-276.
    [53]
    COOK B K, NOBLE D R, PREECE D S, et al.Direct simulation of particle-laden fluids[C]// Pacific Rocks. Rotterdam, 2000: 279-286.
    [54]
    TRAN D K, PRIME N, FROIIO F, et al.Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling[J]. European Journal of Environmental and Civil Engineering, 2017, 21(7/8): 960-987.
    [55]
    罗勇, 龚晓南, 吴瑞潜. 颗粒流模拟和流体与颗粒相互作用分析[J]. 浙江大学学报(工学版), 2007, 41(11): 1932-1936.
    (LUO Yong, GONG Xiao-nan, WU Rui-qian.Analysis and simulation of fluid-particles interaction with particle flow code[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(11): 1932-1936. (in Chinese))
    [56]
    ZEGHAL M, EL SHAMY U.Liquefaction of saturated loose and cemented granular soils[J]. Powder Technology, 2008, 184(2): 254-265.
    [57]
    ZHAO J D, SHAN T.Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239: 248-258.
    [58]
    王胤, 艾军, 杨庆. 考虑粒间滚动阻力的CFD-DEM流-固耦合数值模拟方法[J]. 岩土力学, 2017, 38(6): 1771-1780.
    (WANG Yi, AI Jun, YANG Qing.A CFD-DEM coupled method incorporating soil inter-particle rolling resistance[J]. Rock and Soil Mechanics, 2017, 38(6): 1771-1780. (in Chinese))
    [59]
    ZHAO T, DAI F, XU N W.Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers[J]. Landslides, 2017, 14(1): 189-201.
    [60]
    CHENG K, WANG Y, YANG Q.A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils[J]. Computers and Geotechnics, 2018, 100: 30-51.
    [61]
    蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801.
    (JIANG Ming-jing, ZHANG Wang-cheng.Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese)).
    [62]
    O'SULLIVAN C.Particulate discrete element modelling: a geomechanics perspective[M]. London: CRC Press, 2011.
    [63]
    沈亚男. 净砂管涌理论的三维CFD-DEM耦合分析[D]. 南京: 河海大学, 2017.
    (SHEN Ya-nan.Three dimensional CFD-DEM coupling analysis of pure sand’s piping theory [D]. Nanjing: Hohai University, 2017. (in Chinese))
    [64]
    谭亚飞鸥. 考虑循环荷载的三维微观胶结模型及微生物处理砂土循环三轴 CFD-DEM 耦合模拟[D]. 上海: 上海理工大学, 2018.
    (TAN Ya-fei-ou. A novel three-dimensional bonded contact model incorporating the effect of cyclic loads and CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[D]. Shanghai: University of Shanghai for Science and Technology, 2018. (in Chinese))
    [65]
    WANNE T S, YOUNG R P.Bonded-particle modeling of thermally fractured granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 789-799.
    [66]
    XIA M, ZHAO C, HOBBS B E.Particle simulation of thermally-induced rock damage with consideration of temperature-dependent elastic modulus and strength[J]. Computers and Geotechnics, 2014, 55: 461-473.
    [67]
    TOMAC I, GUTIERREZ M.Formulation and implementation of coupled forced heat convection and heat conduction in DEM[J]. Acta Geotechnica, 2015, 10(4): 421-433.
    [68]
    朱方园. 深海能源土温-压-力微观胶结模型及水合物升温分解锚固桩承载特性离散元分析[D]. 上海: 同济大学, 2013.
    (ZHU Fang-yuan.A thermal-hydro-mechanical bond contact model for methane hydrate bearing sediments and DEM investigating the uplift capacity of their embedded pile after thermal dissociation of hydrate[D]. Shanghai: Tongji University, 2013. (in Chinese))
    [69]
    FELIPPA C A, PARK K C.Staggered transient analysis procedures for coupled mechanical systems: Formulation[J]. Computer Methods in Applied Mechanics and Engineering, 1980, 24(1): 61-111.
    [70]
    TU F, LING D, HU C, et al.DEM-FEM analysis of soil failure process via the separate edge coupling method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(9): 1157-1181.
    [71]
    ZHAO X L, XU J, ZHANG Y H, et al.Coupled DEM and FDM algorithm for geotechnical analysis[J]. International Journal of Geomechanics, 2018, 18(6): 04018040.
    [72]
    LORIG L J, BRADY B H G, CUNDALL P A. Hybrid distinct element-boundary element analysis of jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1986, 23(4): 303-312.
    [73]
    CHEN S G, ZHAO J.Modeling of tunnel excavation using a hybrid DEM/BEM method[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 17(5): 381-386.
    [74]
    WANG H N, XIAO G, JIANG M J, et al.Investigation of rock bolting for deeply buried tunnels via a new efficient hybrid DEM-Analytical model[J]. Tunnelling and Underground Space Technology, 2018, 82: 366-379.
    [75]
    CHEW S H, KAMRUZZAMAN A H M, LEE F H. Physicochemical and engineering behavior of cement treated clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 696-706.
    [76]
    AMOROSI A, RAMPELLO S.An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153-166.
    [77]
    DELAGE P, LEFEBVRE G.Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35.
    [78]
    高国瑞. 中国红土的微结构和工程性质[J]. 岩土工程学报, 1985, 7(5): 10-21.
    (GAO Guo-rui.The microstructures and engineering properties of red soil in China[J]. Chinese Jounal of Geotechnical Engineering, 1985, 7(5): 10-21. (in Chinese))
    [79]
    DELAGE P.A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays[J]. Géotechnique, 2010, 60(5): 353-368.
    [80]
    ZHANG X W, LI J, KONG L W.An investigation of alterations in Zhanjiang clay properties due to atmospheric oxidation[J]. Géotechnique, 2014, 64(12): 1003-1009.
    [81]
    HICHER P Y, WAHYUDI H, TESSIER D.Microstructure analysis of inherent and induced anisotropy in clay[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5(5): 341-371.
    [82]
    蒋明镜, 彭立才, 朱合华, 等. 珠海海积软土剪切带微观结构试验研究[J]. 岩土力学, 2010, 31(7): 2017-2023.
    (JIANG Ming-jing, PENG Li-cai, ZHU He-hua, et al.Microscopic investigation on shear band of marine clay in Zhuhai, China[J]. Rock and Soil Mechanics, 2010, 31(7): 2017-2023. (in Chinese))
    [83]
    LEI H, LU H, WANG X, et al.Changes in soil micro-structure for natural soft clay under accelerated creep condition[J]. Marine Geotechnology, 2016, 34(4):365-375.
    [84]
    SANTAMARINA J C, KLEIN A, FAM M A.Soils and Waves[M]. New York: John Wiley and Sons, 2001.
    [85]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. 3rd ed. New York: John Wiley and Sons, 2005.
    [86]
    VOOTTIPRUEX P, BERGADO D T, SUKSAWAT T, et al.Behavior and simulation of deep cement mixing(DCM) and stiffened deep cement mixing(SDCM) piles under full scale loading[J]. Soils and Foundations, 2011, 51(2): 307-320.
    [87]
    贾金生, 郑璀莹, 王月, 等. 胶结颗粒料坝筑坝理论探讨与实践进展[J]. 中国科学: 技术科学, 2018, 48(10): 1049-1056.
    (JIA Jin-sheng, ZHENG Cui-ying, WANG Yue, et al.Theoretical discussion and practical progress of cemented material dam construction[J]. Scientia Sinica Technologica, 2018, 48(10): 1049-1056. (in Chinese))
    [88]
    CUCCOVILLO T, COOP M R.Yielding and pre-failure deformation of structured sands[J]. Géotechnique, 1997, 47(3): 491-508.
    [89]
    ISMAIL M A, JOER H A, RANDOLPH M F, et al.Cementation of porous materials using calcite[J]. Géotechnique, 2002, 52(5): 313-324.
    [90]
    ISMAIL M A, JOER H A, SIM W H, et al.Effect of cement type on shear behavior of cemented calcareous soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 520-529.
    [91]
    蒋明镜, 刘静德. 结构性砂土胶结厚度分布特性试验研究[J]. 地下空间与工程学报, 2016, 12(2): 362-368.
    (JIANG Ming-jing, LIU Jing-de.Experimental and numerical research on bonding properties of structured sand[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 362-368. (in Chinese))
    [92]
    TERZIS D, LALOUI L.3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation[J]. Scientific reports, 2018, 8(1): 1416.
    [93]
    TAGLIAFERRI F, WALLER J, ANDÒ E, et al.Observing strain localisation processes in bio-cemented sand using x-ray imaging[J]. Granular Matter, 2011, 13(3): 247-250.
    [94]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B 辑), 1987(12): 1309-1318.
    (LEI Xiang-yi.Pore type and collapsibility of Chinese loess[J]. Science in China, Ser B, 1987(12): 1309-1318. (in Chinese))
    [95]
    JIANG M J, ZHANG F G, HU H J, et al.Structural characterization of natural loess and remolded loess under triaxial tests[J]. Engineering Geology, 2014, 181: 249-260.
    [96]
    SMALLEY I J, CABRERA J G.The shape and surface texture of loess particles[J]. Geological Society of America Bulletin, 1970, 81(5): 1591-1596.
    [97]
    蒲毅彬, 陈万业, 廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报, 2000, 22(1): 49-54.
    (PU Yi-bin, CHEN Wan-ye, LIAO Quan-rong.Research on CT structure changing for damping process of loess in Longdong[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 49-54. (in Chinese))
    [98]
    方祥位, 陈正汉, 申春妮, 等. 非饱和原状Q2黄土屈服硬化过程的细观结构演化分析[J].岩土工程学报, 2008, 30(7): 1044-1050.
    (FANG Xiang-wei, CHEN Zheng-han, SHEN Chun-ni, et al.Analysis on meso-structure evolution of unsaturated natural Q2 loess during yield hardening[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1044-1050. (in Chinese))
    [99]
    高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学, 1980(12): 1203-1208.
    (GAO Guo-rui.Microstructure classification and collapsibility of loess[J]. Science in China, 1980(12): 1203-1208. (in Chinese))
    [100]
    蒋明镜, 沈珠江, ADACHI T等. 人工制备湿陷性黄土的微结构分析[J]. 岩土工程学报, 1999, 21(4): 486-491.
    (JIANG Ming-jing, SHEN Zhu-jiang, ADACHI T, et al.Microanalysis on artificially-prepared structured collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 486-491. (in Chinese))
    [101]
    CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652.
    [102]
    JIN Y, HAYASHI J, NAGAO J, et al.New method of assessing absolute permeability of natural methane hydrate sediments by microfocus X-ray computed tomography[J]. Japanese Journal of Applied Physics, 2007, 46(5A): 3159-3162.
    [103]
    SANTAMARINA J C, JANG J.Gas production from hydrate bearing sediments: geomechanical implications[J]. NETL Methane Hydrate Newsletter: Fire in the ice, 2009, 9(4): 18-22.
    [104]
    WINTERS W J, WAITE W F, MASON D, et al.Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 127-135.
    [105]
    李承峰, 胡高伟, 张巍, 等. 有孔虫对南海神狐海域细粒沉积层中天然气水合物形成及赋存特征的影响[J].中国科学: 地球科学, 2016, 46(9): 1223-1230.
    (LI Chen-feng, HU Gao-wei, Zhang Wei, et al.Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from Shenhu area, South China Sea[J]. Scientia Sinica Terrae, 2016, 46(9): 1223-1230. (in Chinese))
    [106]
    WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003.
    [107]
    SOGA K, LEE S L, NG M, et al.Characterisation and engineering properties of methane hydrate soils[J]. Characterisation and Engineering Properties of Natural Soils 2007, 4: 2591-2642.
    [108]
    SAHOO S K, MADHUSUDHAN B N, MARÍN‐ MORENO H, et al. Laboratory insights into the effect of sediment‐hosted methane hydrate morphology on elastic wave velocity from time‐lapse 4D synchrotron X-ray computed tomography[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4502-4521.
    [109]
    田慧会, 韦昌富, 颜荣涛, 等. 粉土中二氧化碳水合物分解过程的核磁试验研究[J]. 中国科学:物理学力学天文学, 2019, 49(3): 034615.(TIAN Hui-hui, WEI Chang-fu, YAN Rong-tao, et al. A NMR-based analysis of carbon dioxide hydrate dissociation process in silt[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2019, 49(3): 034615. (in Chinese))
    [110]
    HYODO M, YONEDA J, YOSHIMOTO N, et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [111]
    HEIKEN G, VANIMAN D, FRENCH B M.Lunar sourcebook: a user's guide to the Moon[M]. Cambridge: Cambridge University Press, 1991.
    [112]
    欧阳自远. 月球科学概论[M]. 北京, 中国宇航出版社, 2005.
    (OUYANG Zi-yuan.Introduction of lunar sciences[M]. Beijing: China Aerospace Publishing House, 2005. (in Chinese))
    [113]
    Lunar and Planetary Institute. Lunar samples by category, soil: 10085 Coarse-fines[OL].
    [114]
    MCKAY D S, HEIKEN G H, TAYLOR R M, et al.Apollo 14 soils: size distribution and particle types[J]. Geochimica et Cosmochimica Acta (Third Lunar Science Conference Proceedings, Houton), 1972, 1(S3): 983-994.
    [115]
    CHIARAMONTI A N, GOGUEN J D, GARBOCZI E J.Quantifying the 3-dimensional shape of lunar regolith particles using x-ray computed tomography and scanning electron microscopy at sub-γ resolution[J]. Microscopy and Microanalysis, 2017, 23(S1): 2194-2195.
    [116]
    COLE D M, HOPKINS M A.The contact properties of naturally occurring geologic materials: experimental observations[J]. Granular Matter, 2016, 18(3): 62.
    [117]
    SANDEEP C S, SENETAKIS K.Grain-scale mechanics of quartz sand under normal and tangential loading[J]. Tribology International, 2018, 117: 261-271.
    [118]
    YANG L, WANG D, GUO Y, et al.Tribological behaviors of quartz sand particles for hydraulic fracturing[J]. Tribology International, 2016, 102: 485-496.
    [119]
    SENETAKIS K, COOP M R, TODISCO M C.The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals[J]. Soils and Foundations, 2013, 53(5): 746-755.
    [120]
    MICHALOWSKI R L, WANG Z, NADUKURU S S.Maturing of contacts and ageing of silica sand[J]. Géotechnique, 2018, 68(2): 133-145.
    [121]
    GRAS J P, DELENNE J Y, EI YOUSSOUFI M S. Study of capillary interaction between two grains: a new experimental device with suction control[J]. Granular Matter, 2013, 15(1): 49-56.
    [122]
    JUNG J W, SANTAMARINA J C.Hydrate adhesive and tensile strengths[J]. Geochemistry, Geophysics, Geosystems, 2011, 12: Q08003.
    [123]
    DELENNE J Y, EI YOUSSOUFI M S, CHERBLANC F, et al. Mechanical behaviour and failure of cohesive granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(15): 1577-1594.
    [124]
    MCDOWELL G R, BOLTON M D.On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679.
    [125]
    AFSHAR T, DISFANI M M, ARULRAJAH A, et al.Impact of particle shape on breakage of recycled construction and demolition aggregates[J]. Powder Technology, 2017, 308: 1-12.
    [126]
    NAKATA Y, HYDE A F L, HYODO M, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567-583.
    [127]
    PARAB N D, CLAUS B, HUDSPETH M C, et al.Experimental assessment of fracture of individual sand particles at different loading rates[J]. International Journal of Impact Engineering, 2014, 68: 8-14.
    [128]
    吴迪. 考虑颗粒破碎的钙质砂动力特性试验分析与离散元数值模拟[D]. 上海: 同济大学, 2018.
    (WU Di.DEM and experimental analysis of the dynamic behavior of crushable carbonate sands[D]. Shanghai: Tongji University, 2018. (in Chinese))
    [129]
    丁志军. 基于微观的钙质砂基本物理力学特性试验研究[D]. 上海: 上海理工大学, 2017.
    (DING Zhi-jun.Experimental study on basic physical and mechanical properties of calcareous sand based on microscopic mechanism[D]. Shanghai: University of Shanghai for Science and Technology, 2017. (in Chinese))
    [130]
    ANANDARAJAH A.Numerical simulation of one-dimensional behavior of kaolinite[J]. Géotechnique, 2000, 50(5): 509-519.
    [131]
    YAO M, ANANDARAJAH A.Three-dimensional discrete element method of analysis of clays[J]. Journal of Engineering Mechanics, 2003, 129(6): 585-596.
    [132]
    KATTI D R, MATAR M I, KATTI K S, et al.Multiscale modeling of swelling clays: a computational and experimental approach[J]. KSCE Journal of Civil Engineering, 2009, 13(4): 243-255.
    [133]
    BAYESTEH H, MIRGHASEMI A A.Numerical simulation of pore fluid characteristic effect on the volume change behavior of montmorillonite clays[J]. Computers and Geotechnics, 2013, 48(3): 146-155.
    [134]
    ANANDARAJAH A, CHEN J.Double-layer repulsive force between two inclined platy particles according to the gouy-chapman theory[J]. Journal of Colloid and Interface Science, 1994, 168(1): 111-117.
    [135]
    ANANDARAJAH A, CHEN J.Van der Waals attractive force between clay particles in water and contaminant[J]. Soils and Foundations, 1997, 37(2): 27-37.
    [136]
    SHANG X, HU N, ZHOU G.Calculation of the repulsive force between two clay particles[J]. Computers and Geotechnics, 2015, 69: 272-278.
    [137]
    JIANG M J, LI T, HU H J, et al.DEM analyses of one-dimensional compression and collapse behaviour of unsaturated structural loess[J]. Computers and Geotechnics, 2014, 60: 47-60.
    [138]
    JIANG M J, LI T, THORNTON C, et al.Wetting-induced collapse behavior of unsaturated and structural loess under biaxial tests using distinct element method[J]. International Journal of Geomechanics (ASCE), 2016, 17(1): 06016010.
    [139]
    FISHER R A.On the capillary forces in an ideal soil[J]. Journal of Agricultural Science, 1926, 16: 492-505.
    [140]
    VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al.Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392.
    [141]
    SHEN Z F, JIANG M J.DEM simulation of bonded granular material: Part II extension to grain-coating type methane hydrate bearing sand[J]. Computers and Geotechnics, 2016, 75: 225-243.
    [142]
    杜文浩. 胶结型深海能源土温-压-力-化微观接触模型及其多尺度离散元模拟[D]. 上海: 同济大学, 2018.
    (DU Wen-hao.A thermal-hydro-mechanical-chemical bond contact model and multi-scale dem simulation for grain-cementing type MHBS[D]. Shanghai: Tongji University, 2018. (in Chinese))
    [143]
    JIANG M J, HE J, WANG J F, et al.DEM analysis of geomechanical properties of cemented methane hydrate-bearing soils at different temperatures and pressures[J]. International Journal of Geomechanics, 2016, 16(3): 04015087.
    [144]
    JIANG M J, SHEN Z F, WU D.CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone[J]. Landslides, 2018, 15(11): 2227-2241.
    [145]
    周凤玺, 赖远明. 冻结砂土力学性质的离散元模拟[J]. 岩土力学, 2010, 31(12): 4016-4020.
    (ZHOU Feng-xi, LAI Yuan-ming.Simulation of mechanical behavior for frozen sand clay by discrete element method[J]. Rock and Soil Mechanics, 2010, 31(12): 4016-4020. (in Chinese))
    [146]
    PERKO H A, NELSON J D, SADEH W Z.Surface cleanliness effect on lunar soil shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 371-383.
    [147]
    JIANG M J, YIN Z Y, SHEN Z F.Shear band formation in lunar regolith by discrete element analyses[J]. Granular Matter, 2016, 18: 32.
    [148]
    JIANG M J, DAI Y S, CUI L, et al.Experimental and DEM analyses on wheel-soil interaction[J]. Journal of Terramechanics, 2017, 76: 15-28.
    [149]
    XI B L, JIANG M J.3D DEM analysis of the effects of low confining pressure on mechanical behavior of lunar regolith[C]// Atlanta Symposium on Geo-mechanics from Micro to Macro in Research and Practice. Atlanta, 2018.
    [150]
    ODA M.Initial fabrics and their relations to mechanical properties of granular material[J]. Soils and Foundations, 1972, 12(1): 17-36.
    [151]
    YANG Z X, LI X S, YANG J.Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008,58(4): 237-248.
    [152]
    TING J M, KHWAJA M, MEACHUM L R, et al.An ellipse-based discrete element model for granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics 1993, 17(9): 603-623.
    [153]
    NG T T.Numerical simulations of granular soil using elliptic particles[J]. Computer and Geotechnics, 1994, 16(2): 153-169.
    [154]
    NOUGUIER-LEHON C, CAMBOU B, VINCENS E.Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(14): 1207-1226.
    [155]
    HOSSEININIA E S.Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles[J]. Particuology, 2012, 10(5): 542-552.
    [156]
    JIANG M J, SIMA J, LI L Q, et al.Investigation of influence of particle characteristics on the non-coaxiality of anisotropic granular materials using DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(2): 198-222.
    [157]
    NG T T.Discrete element method simulations of the critical state of a granular material[J]. International Journal of Geomechanics, 2009, 9(5): 209-216.
    [158]
    GUO N, ZHAO J D.The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics, 2013, 47: 1-15.
    [159]
    JIANG M J, ZHANG A, FU C.3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates[J]. European Journal of Environmental and Civil Engineering, 2018, 22(S1): 37-56.
    [160]
    LI X S, DAFALIAS Y F.Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263-275.
    [161]
    WAN R G, GUO P J.Stress dilatancy and fabric dependencies on sand behavior[J]. Journal of Engineering Mechanics, 2004, 130(6): 635-645.
    [162]
    YANG Z X, WU Y.Critical state for anisotropic granular materials: a discrete element perspective[J]. International Journal of Geomechanics, 2017, 17(2): 04016054.
    [163]
    ZHOU W, LIU J Y, MA G, et al.Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials[J]. Acta Geotechnica, 2017, 12(3): 527-540.
    [164]
    FU P C, DAFALIAS Y F.Fabric evolution within shear bands of granular materials and its relation to critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(18): 1918-1948.
    [165]
    XIE Y H, YANG Z X, BARRETO D, et al.The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials[J]. Granular Matter, 2017, 19(2): 35.
    [166]
    ZHAO J, GUO N.Unique critical state characteristics in granular media considering fabric anisotropy[J]. Géotechnique. 2013, 63(8): 695.
    [167]
    刘静德. 各向异性结构性砂土宏微观力学特性数值模拟及其本构模型[D]. 上海: 同济大学, 2014.
    (LIU Jing-de.Consititutive model and numerical simulation of macro-micro behaviors of anisotropic structural sands[D]. Shanghai: Tongji University, 2014. (in Chinese))
    [168]
    AL-RKABY A H J, CHEGENIZADEH A, NIKRAZ H R. An experimental study on the cyclic settlement of sand and cemented sand under different inclinations of the bedding angle and loading amplitudes[J/OL]. European Journal of Environmental and Civil Engineering, DOI: 10.1080/ 19648189.2017.1327891.
    [169]
    ANANDARAJAH A.On influence of fabric anisotropy on the stress-strain behavior of clays[J]. Computers and Geotechnics, 2000, 27(1): 1-17.
    [170]
    DESRUES J, ANDÒ E, MEVOLI F A, et al.How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on[J]. Mechanics Research Communications, 2018, 92: 142-146.
    [171]
    HAN C, VARDOULAKIS I G.Plane-strain compression experiments on water-saturated fine-grained sand[J]. Géotechnique, 1991, 41(1):
  • Related Articles

    [1]GUO Wanli, CAI Zhengyin, ZHU Jungao. Three state variables-related constitutive model for coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 234-242. DOI: 10.11779/CJGE20230372
    [2]JIN Le-wen, WANG Chen, LIANG Fa-yun. Status and engineering problems of utilization of deep underground space in urban coastal soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 178-183. DOI: 10.11779/CJGE2021S2043
    [3]HUANG Wan-peng, SUN Yuan-xiang, CHEN Shao-jie. Theory of creep disturbance effect of rock and its application in support of deep dynamic engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1621-1630. DOI: 10.11779/CJGE202109006
    [4]LU De-chun, LI Xiao-qiang, LIANG Jing-yu, DU Xiu-li. 3D elastoplastic constitutive model for normally consolidated soils based on characteristic stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 50-59. DOI: 10.11779/CJGE201901005
    [5]WANG Lei, ZHU Bin, LI Jun-chao, CHEN Yun-min. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1326-1333. DOI: 10.11779/CJGE201407017
    [6]MA Tian-tian, WEI Chang-fu, YAN Rong-tao, WEI Hou-zhen, TIAN Hui-hui. SMP-based representation of a constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 295-300. DOI: 10.11779/CJGE201402004
    [7]XUE Li-ying, YANG Wen-sheng, LI Rong-nian. Discussion and analysis of accident reasons of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 468-473.
    [8]JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.
    [9]LIU Han-long, XIAO Yang, CUI Yun-liang. Elasto-plastic damage constitutive model in three-dimensional stress space for structured soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 637.
    [10]ZHAO Xihong, LI Bei, LI Kan, YANG Guoxiang. Study on theory and practice for specially big and deep excavation engineering——Deep excavation engineering in Puxi,Outer Ring Tunnel Project of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 258-263.
  • Cited by

    Periodical cited type(120)

    1. 白松松,周宗青,高成路,孟庆余,刘建勋,高天,王旭,柯成林. 钻爆法海底隧道穿越断层破碎带围岩稳定性综合分析与控制方法研究. 岩石力学与工程学报. 2025(03): 691-704 .
    2. 代倩,廖红建,康孝森,孙玉军,周恒. 循环加载下压实黄土的边界面塑性本构模型. 西北大学学报(自然科学版). 2024(01): 26-32 .
    3. 杜炜,聂如松,谭永长,张杰,祁延录,赵春彦. 格栅节点加强对风积沙筋土界面力学性能的影响. 中南大学学报(自然科学版). 2024(01): 172-187 .
    4. 张杰,聂如松,李列列,李亚峰,杜炜,黄茂桐. 基于柔性边界的非饱和土三轴试验及离散元分析. 应用基础与工程科学学报. 2024(01): 208-222 .
    5. 刘昂,张尔康,林文丽. 三轴剪切条件下水泥胶结砂声发射特征信息演化规律研究. 中南大学学报(自然科学版). 2024(02): 618-627 .
    6. 陈轩翌,许领,魏欣,董立. 太原湿陷性黄土微观结构沿剖面变化特征研究. 工程地质学报. 2024(01): 8-18 .
    7. 董侨 ,杜豫川 ,郭猛 ,黄优 ,贾彦顺 ,蒋玮 ,金娇 ,李峰 ,刘成龙 ,刘鹏飞 ,刘状壮 ,罗雪 ,吕松涛 ,马涛 ,沙爱民 ,单丽岩 ,司春棣 ,王朝辉 ,王大为 ,肖月 ,徐慧宁 ,杨旭 ,张久鹏 ,张园 ,朱兴一. 中国路面工程学术研究综述·2024. 中国公路学报. 2024(03): 1-81 .
    8. 王思远,蒋明镜. 基于嫦娥五号月壤粒形特征的离散元模拟方法. 岩土工程学报. 2024(04): 833-842 . 本站查看
    9. 郝俊峰,冯飞鸿,王涛,谷孟辉. pH值对湿陷性黄土物理力学性能及微观结构的影响. 岩土工程技术. 2024(02): 233-237 .
    10. 张杰,聂如松,李列列,黄茂桐,谭永长. 道砟嵌入路基土试样离散元虚拟三轴试验. 交通运输工程学报. 2024(02): 137-151 .
    11. 葛苗苗,何璇,谷川,李宁,刘乃飞. 压缩及增减湿作用下非饱和黄土细观结构演化规律研究. 工程地质学报. 2024(02): 397-409 .
    12. 刘瑾,车文越,郝社锋,马晓凡,喻永祥,王颖,陈志昊,李婉婉,钱卫. 基于CT技术的黄原胶加固土干湿循环条件下力学性能和微观结构劣化机制研究. 岩土工程学报. 2024(05): 1119-1126 . 本站查看
    13. 杨盼,刘创奕,鹿庆蕊,陈士军. 纤维地聚物改性粉质黏土无侧限抗压强度试验研究. 科学技术与工程. 2024(13): 5491-5499 .
    14. 王思远,蒋明镜,石安宁. 三轴剪切下砂土应变局部化宏微观特性演化规律离散元分析. 岩石力学与工程学报. 2024(S1): 3586-3596 .
    15. 王涛,姬建. 砂土边坡桩间水平土拱机理与演变规律离散元分析. 岩土工程学报. 2024(08): 1742-1752 . 本站查看
    16. 张旭东,王永志,王体强,段雪锋,袁晓铭. 宽级配土离心试验地基模型落雨法分层机制与数值模拟. 岩土工程学报. 2024(S1): 122-126 . 本站查看
    17. 张曦,骆建文,潘俊义,刘斌,杨楠. 陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素. 中国地质灾害与防治学报. 2024(04): 75-84 .
    18. 张旭东,王永志,王体强,刘红帅,段雪锋,袁晓铭. 宽级配珊瑚土落雨制模分层现象与控制方法. 自然灾害学报. 2024(04): 188-197 .
    19. 俞骏晖. 土工格室加筋沥青混凝土单轴压缩过程细观特性研究. 交通科技. 2024(04): 56-63 .
    20. 郭静,赵振华,马梦媛,史长远,姚占勇,赵秋红,姚凯. 基于MatDEM的松散地基喷浆加固浆液扩散规律. 山东大学学报(工学版). 2024(04): 106-114+121 .
    21. 吴峰,黄林冲,赖正首. 基于球面沃罗诺伊的颗粒表面离散与重构方法. 工程力学. 2024(09): 245-256 .
    22. 陈宝,柳超凡,邓荣升,周一鸣. 非饱和黄土侧限压缩和湿陷试验的宏微观离散元特性分析. 工程科学与技术. 2024(05): 212-220 .
    23. 童立红,傅力,徐长节. 颗粒旋转对颗粒材料系统抗剪强度影响研究. 工程力学. 2024(11): 125-133 .
    24. 张琪,李祥春,LI Biao,聂百胜,张良,刘艺,周昌勇,杨刚. 单轴压缩条件下煤体宏-微观损伤破坏特征研究. 采矿与安全工程学报. 2024(06): 1241-1253 .
    25. 马莉,叶尔哈力·胡斯曼,刘学军,石开欣,胡扬阳. 大温差环境下新疆伊犁黄土变形特性. 应用基础与工程科学学报. 2024(06): 1630-1647 .
    26. 蒋明镜,张卢丰,韩亮,姜朋明. 基于符号回归算法的结构性砂土损伤规律研究. 岩土力学. 2024(12): 3768-3778 .
    27. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    28. 洪秋阳,来弘鹏,刘禹阳. Q_2黄土微观结构特征三维数字化方法实现. 地下空间与工程学报. 2024(06): 1806-1817+1866 .
    29. 李鑫,陈汉青,苏栋,陈湘生,沈翔. 干湿循环对岩溶地区细角砾土力学性能和微观特征的影响(英文). Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2024(12): 974-991 .
    30. 杨启志,赫明胜,施雷,朱梦岚,李章彦,何文兵. 分层防寒土与接触式清土机具相互作用的离散元仿真参数标定. 江苏大学学报(自然科学版). 2023(01): 52-61 .
    31. 陈志敏,刘耀辉,郭利民,李宁,王壹敏. 松散岩堆细-宏观强度关系与围岩压力. 湖南大学学报(自然科学版). 2023(01): 189-197 .
    32. 奚邦禄,蒋明镜,张振华,刘笑显. 高内摩擦角土体承载力特性形状效应分析. 水利与建筑工程学报. 2023(01): 117-123 .
    33. 陈贺,鲁志强,李果,陈争玉. 滇西北高原山区不同降雨条件下斜坡深部响应的试验研究. 中外公路. 2023(01): 11-18 .
    34. 薛金昊,胡建林,郭江峰,郑瑞海,赵天亮. 冀北地区原状土与重塑土的抗剪强度对比研究. 宁夏工程技术. 2023(01): 44-48+55 .
    35. 刘伟明,张华涛,常锦,胡林杰,向家骏. 大气干湿循环作用下高液限土微观结构研究. 长沙大学学报. 2023(02): 42-47+53 .
    36. 单浩,张思卿,赵晔,曹永刚,徐寿政,刘鑫. 基于独立分量分析的黏土欧拉数与物理力学指标关系研究. 三峡大学学报(自然科学版). 2023(03): 50-55 .
    37. 秦鹏飞,钟宏伟,刘坚. STUDY ON MESO-MECHANICAL SIMULATION OF GROUTING FOR UNFAVORABLE GEOLOGICAL CONDITIONS. 工程力学. 2023(S1): 248-258 .
    38. 郭剑,崔一飞. 滑坡-泥石流转化研究进展. 工程地质学报. 2023(03): 762-779 .
    39. 刘芸松,王嗣强,季顺迎. 基于水平集-离散元方法的球谐函数颗粒材料缓冲性能分析. 计算力学学报. 2023(04): 538-545 .
    40. 单熠博,陈生水,钟启明,王琳,杨蒙,卢洪宁,陈小康. 压实黄土淤地坝“陡坎”冲蚀特性研究. 岩石力学与工程学报. 2023(09): 2315-2328 .
    41. 刘嘉英,许智超,魏纲,胡成宝,孙苗苗,王雨婷. 加卸载状态下散粒体力链结构的复杂网络分析. 岩土力学. 2023(09): 2767-2778 .
    42. 奚邦禄,蒋明镜,莫品强,张振华,郭杨. 不同重力场下月基承载特性离散元数值分析. 中南大学学报(自然科学版). 2023(08): 3226-3236 .
    43. 牛庚,郭晓霞,陈凡秀,孔亮,卢有谦,李凯. 水-力作用下黏土孔隙结构演化规律研究进展. 防灾减灾工程学报. 2023(04): 905-916 .
    44. 葛晨雨,宿利平,王林,徐硕,刘洋. 基于离散元的浅埋偏压隧道施工细观机理研究. 土木工程与管理学报. 2023(04): 107-114 .
    45. 边晓亚,赵哲坤,武林,陈旭勇. 宏微观试验融入土力学课程教学的探索. 科教文汇. 2023(06): 83-86 .
    46. 张杰,聂如松,黄茂桐,谭永长,肖玲. 基于柔性边界的非饱和接触模型参数标定方法. 工程科学与技术. 2023(06): 132-141 .
    47. 李栋,彭松,常丹,刘建坤,南霁云,汪旭,曹雄. 基于压汞试验的珠海软土微观孔隙特征分析. 岩石力学与工程学报. 2023(S2): 4289-4298 .
    48. 陈永,黄英豪,王硕,蔡正银,穆彦虎. 冻融循环对不同压实度下膨胀土力学特性影响的试验研究. 岩石力学与工程学报. 2023(S2): 4299-4309 .
    49. 邵龙潭,吴雪晴,田筱剑,郭晓霞,陈之祥. 基于图像测量三轴试验的土的本构模型构建方法. 土木工程学报. 2023(S2): 11-19 .
    50. 栾纪元,王冀鹏. 基于4D显微成像的非饱和颗粒土微观力学与渗流试验研究. 岩土力学. 2023(11): 3252-3260 .
    51. 王思远,蒋明镜,李承超,张旭东. 三轴剪切条件下胶结型深海能源土应变局部化离散元模拟分析. 岩土力学. 2023(11): 3307-3317+3338 .
    52. 高雪,高燕,孙可天,史天根. 剪切过程中钙质砂的颗粒破碎与能量演化. 中山大学学报(自然科学版)(中英文). 2023(06): 11-21 .
    53. 赵奕博,田水承,黄剑,张铎. 宁夏灵新矿不粘煤的孔隙结构特征及其对CO吸附的影响. 西安科技大学学报. 2023(06): 1071-1078 .
    54. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    55. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 .
    56. 袁志辉,唐春,杨普济,甘建军. 干湿循环下红土力学性质劣化的多尺度试验. 水力发电学报. 2022(02): 79-91 .
    57. 张嘉凡,徐荣平,刘洋,张慧梅. 冻融循环作用下注浆裂隙岩体微观孔隙演化规律及剪切力学行为研究. 岩石力学与工程学报. 2022(04): 676-690 .
    58. 刘云贺,王琦,宁致远,孟霄,董静,杨迪雄. 考虑损伤的平行黏结接触模型开发及其参数影响分析. 岩土力学. 2022(03): 615-624 .
    59. 余沛. 三相草图在土的关键物理性质指标计算中的应用分析. 三门峡职业技术学院学报. 2022(01): 145-148 .
    60. 杨磊,涂冬媚,朱启银,吴则祥,余闯. 考虑变温幅值影响的颗粒循环热固结离散元法试验研究. 岩土力学. 2022(S1): 591-600 .
    61. 申志福,张栩银,高峰,王志华,高洪梅. 考虑黏土片不规则形状的黏土离散元模拟方法. 岩土工程学报. 2022(09): 1654-1662 . 本站查看
    62. 范文,魏亚妮,于渤,邓龙胜,于宁宇. 黄土湿陷微观机理研究现状及发展趋势. 水文地质工程地质. 2022(05): 144-156 .
    63. 张兴臣,梁庆国,孙文,曹小平. 地震作用下黄土边坡动力响应的时频特征分析. 地震工程学报. 2022(05): 1090-1099 .
    64. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 .
    65. 董彤,孔亮,郑颖人. 土的应力方向依赖性(Ⅰ):概念与现象. 地下空间与工程学报. 2022(05): 1452-1464 .
    66. 薄英鋆,王华宁,蒋明镜,车纳. 隧道力学状态离散元模拟中的粒径效应. 地下空间与工程学报. 2022(05): 1471-1480 .
    67. 骆莉莎,孙天佑,申志福,周峰. 非饱和土中弯液面形态与液桥力的分子动力学模拟. 南京工业大学学报(自然科学版). 2022(06): 675-683+690 .
    68. 郭伟超,祁长青,李青朋,甘飞飞. 不同固化剂含量改良砂土力学特性数值模拟. 河北工程大学学报(自然科学版). 2022(04): 49-55 .
    69. 董彤,孔亮,郑颖人. 土的应力方向依赖性(Ⅱ):理论与模型. 地下空间与工程学报. 2022(06): 1789-1798 .
    70. 周小文,许衍彬,赵仕威,陈昊,张昌辉. 偏心率对颗粒介质次生各向异性的影响. 华南理工大学学报(自然科学版). 2022(11): 141-154 .
    71. Chengsheng Li,Lingwei Kong,Ran An. Evolution of cracks in the shear bands of granite residual soil. Journal of Rock Mechanics and Geotechnical Engineering. 2022(06): 1956-1966 .
    72. WenDong Xu,XueFeng Li,WenWei Yang,HongJin Jia. Triaxial test on glass beads simulating coarse-grained soil. Research in Cold and Arid Regions. 2022(04): 287-294 .
    73. 张伏光,聂卓琛,陈孟飞,冯怀平. 不排水循环荷载条件下胶结砂土宏微观力学性质离散元模拟研究. 岩土工程学报. 2021(03): 456-464 . 本站查看
    74. 陈强. 岩土工程实践工作中土力学相关问题研究. 四川水泥. 2021(03): 318-319 .
    75. 申志福,高峰,蒋明镜,王志华,刘璐,高洪梅. 黏土片与球状颗粒间范德华作用的简便计算方法. 岩土工程学报. 2021(04): 776-782 . 本站查看
    76. 胡世丽,蒋冰. 级配和含水量对赣南红土抗剪强度特性影响的试验研究. 江西理工大学学报. 2021(01): 1-6 .
    77. 葛娟,刘培成,陈忠清,吕越,祁娅颖. 扁铲探头贯入过程的颗粒流数值模拟. 科技通报. 2021(04): 109-114 .
    78. 申志福,孙天佑,白宇帆,蒋明镜,周峰. 基于电镜成像原理的黏土微结构参数提取方法. 岩土工程学报. 2021(05): 933-939 . 本站查看
    79. 陈科平,任新开,贺勇,吴丹伟. 吹填土砂井地基离心模型试验研究. 中南大学学报(自然科学版). 2021(04): 1222-1231 .
    80. 赵金玓,高宇甲,霍继炜,韩明涛,姜彤,张俊然,朱云江. 结构性对黄土抗剪强度的影响研究——以国道G310三门峡段为例. 水利与建筑工程学报. 2021(02): 6-11 .
    81. 尧俊凯,陈晓斌,蔡德钩,胡航,谢康,吴梦黎. 基于X-ray CT粗粒土填料细观结构表征分析. 铁道建筑. 2021(05): 70-74 .
    82. 陈剑平,刘经,王清,韩岩,王加奇,李兴华. 含水率对分散性土抗剪强度特性影响的微观解释. 吉林大学学报(地球科学版). 2021(03): 792-803 .
    83. 赵亚鹏,孔亮. 基于工程实例的非线性问题数值软件选取分析. 科学技术与工程. 2021(15): 6114-6122 .
    84. 蒋明镜,陈意茹,卢国文. 一种实用型深海能源土多场耦合离散元数值方法. 岩土工程学报. 2021(08): 1391-1398 . 本站查看
    85. 蔡正银,朱洵,代志宇. 考虑密度影响的砂土静止土压力系数研究. 岩石力学与工程学报. 2021(08): 1664-1671 .
    86. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    87. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 .
    88. 王怡舒,沈超敏,刘斯宏,陈静涛. 考虑颗粒转矩的接触网络诱发各向异性分析. 力学学报. 2021(06): 1634-1646 .
    89. 邹宇雄,马刚,李易奥,王頔,邱焕峰,周伟. 椭球颗粒体系剪切过程中自由体积的分布与演化. 力学学报. 2021(09): 2374-2383 .
    90. 张鸿勇,张艳杰,刘春,施斌,曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析. 隧道与地下工程灾害防治. 2021(03): 100-110 .
    91. 邓津,安亮,王盛年. 黄土取土方向微观分析与动三轴颗粒流模拟研究. 东南大学学报(自然科学版). 2021(05): 833-840 .
    92. 吴晓. 往复剪切作用下砂泥岩混合料力学特性分析. 水利水运工程学报. 2021(05): 84-91 .
    93. 魏立新,杨春山,莫海鸿,陈俊生,徐世杨. 盾构竖井垂直顶管顶升力模型试验及离散元分析. 中南大学学报(自然科学版). 2021(10): 3595-3604 .
    94. 李顺,吴晓. 泥岩颗粒含量对砂泥岩混合料剪切特性的影响. 水运工程. 2021(11): 192-197 .
    95. 蒋明镜,孙若晗,李涛,杨涛,谭亚飞鸥. 微生物处理砂土不排水循环三轴剪切CFD-DEM模拟. 岩土工程学报. 2020(01): 20-28 . 本站查看
    96. 张嘎,王刚,尹振宇,杨仲轩. 土的基本特性及本构关系. 土木工程学报. 2020(02): 105-118 .
    97. 蔺建国,叶加兵,邹维列. 孔隙溶液对膨胀土微观结构的影响. 华中科技大学学报(自然科学版). 2020(04): 12-17 .
    98. 李涛,蒋明镜,孙若晗. 多种应力路径下结构性土胶结破损演化规律离散元分析. 岩土工程学报. 2020(06): 1159-1166 . 本站查看
    99. 刘春,乐天呈,施斌,朱遥. 颗粒离散元法工程应用的三大问题探讨. 岩石力学与工程学报. 2020(06): 1142-1152 .
    100. 牛庚,邵龙潭,孙德安,韦昌富,郭晓霞,徐华. 土-水特征曲线测量过程中孔隙分布的演化规律探讨. 岩土力学. 2020(04): 1195-1202 .
    101. 周凤玺,王立业,赖远明. 饱和盐渍土渗透吸力的回顾及研究. 岩土工程学报. 2020(07): 1199-1210 . 本站查看
    102. 潘洪武,王伟,张丙印. 基于计算接触力学的粗颗粒土体材料细观性质模拟. 工程力学. 2020(07): 151-158 .
    103. 秦鹏飞. 不良地质体注浆细观力学模拟研究. 煤炭学报. 2020(07): 2646-2654 .
    104. 黄达,李悦,岑夺丰. 拉-压应力状态下脆性岩石强度及破坏机制颗粒流模拟. 工程地质学报. 2020(04): 677-684 .
    105. 蒋佳琪,徐日庆,俞建霖,裘志坚,秦建设,詹晓波. 一种基于蛋形函数的实用软土弹塑性本构理论(英文). Journal of Central South University. 2020(08): 2424-2439 .
    106. 王桂萱,鞠碧玉,秦建敏. 土-结构接触界面的宏细观参数敏感性分析. 扬州大学学报(自然科学版). 2020(03): 44-50 .
    107. 刘宽,叶万军,高海军,董琪. 干湿环境下膨胀土力学性能劣化的多尺度效应. 岩石力学与工程学报. 2020(10): 2148-2159 .
    108. 李福秀,吴志坚,严武建,赵多银. 基于振动台试验的黄土塬边斜坡动力响应特性研究. 岩土力学. 2020(09): 2880-2890 .
    109. 岑夺丰,刘超,黄达. 砂岩拉剪强度和破裂特征试验研究及数值模拟. 岩石力学与工程学报. 2020(07): 1333-1342 .
    110. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    111. 杨舒涵,周伟,马刚,刘嘉英,漆天奇. 粒间摩擦对岩土颗粒材料三维力学行为的影响机制. 岩土工程学报. 2020(10): 1885-1893 . 本站查看
    112. 江亚洲,李永强,汪刚,马荣,景立平. 轴向应力控制偏差对砂土液化特性影响研究. 岩石力学与工程学报. 2020(S1): 3023-3031 .
    113. 凌道盛,江琪熙,赵宇. 考虑基层裹挟的碎屑流铲刮效应数值模拟. 浙江大学学报(工学版). 2020(11): 2067-2075 .
    114. 吴焕然,刘汉龙,赵吉东,肖杨. 高孔隙率砂岩中破坏模式演化的多尺度分析. 岩土工程学报. 2020(12): 2222-2229 . 本站查看
    115. 蒋明镜,王华宁,李光帅,廖优斌,陈有亮,卫超群. 深部复合岩体隧道开挖离散元模拟. 岩土工程学报. 2020(S2): 20-25 . 本站查看
    116. 蒋明镜,吕雷,石安宁,曹培,吴晓峰. 适用于显微CT扫描的微型动三轴仪研制与试验验证. 岩土工程学报. 2020(S1): 214-218 . 本站查看
    117. 蒋明镜,李光帅,曹培,吴晓峰. 用于土体宏微观力学特性测试的微型三轴仪研制. 岩土工程学报. 2020(S1): 6-10 . 本站查看
    118. 戴轩,霍海峰,程雪松,郭旺,冯兴. 高水压作用下水砂耦合流失的DEM-CFD分析. 工业建筑. 2020(11): 82-90 .
    119. 杨惠. 黄土湿陷特性的微观研究进展及方法. 科学技术创新. 2019(21): 27-28 .
    120. 史旦达,王威,薛剑峰,邵伟. 压-剪复合应力下非球形颗粒材料空心圆柱剪切试验的离散元模拟. 水利学报. 2019(09): 1052-1062 .

    Other cited types(155)

Catalog

    Article views (3039) PDF downloads (1861) Cited by(275)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return