• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Jin-wei, CHI Shi-chun, SHAO Xiao-quan, ZHAO Fei-xiang. Application of orthogonal-contour method in calibration of microscopic parameters of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1867-1875. DOI: 10.11779/CJGE202010012
Citation: WANG Jin-wei, CHI Shi-chun, SHAO Xiao-quan, ZHAO Fei-xiang. Application of orthogonal-contour method in calibration of microscopic parameters of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1867-1875. DOI: 10.11779/CJGE202010012

Application of orthogonal-contour method in calibration of microscopic parameters of rockfill materials

More Information
  • Received Date: September 23, 2019
  • Available Online: December 07, 2022
  • In order to solve the problem of large amount of calculation in calibration of microscopic parameters for rockfill materials in discrete element model, taking the laboratory tri-axial tests on the rockfill materials as the object, the methods of orthogonal tests and contour lines are used to determine the microscopic parameters of the rockfill materials rapidly on the basis of narrowing the scope of microscopic parameters and analyzing the sensitivity of the macroscopic behaviors of the specimens to the microscopic parameters. The results show that the multiple orthogonal tests can quickly narrow the range of microscopic parameters. The advantages of the orthogonal test and contour method can be used to calibrate the microscopic parameters in discrete element model. This method also provides reference for other materials to calibrate microscopic parameters.
  • [1]
    周伟, 常晓林, 马刚. 高堆石坝变形宏细观机制与数值模拟[M]. 北京: 科学出版社, 2017.

    ZHOU Wei, CHANG Xiao-lin, Ma Gang. Macroscopic and Microscopic Deformation Mechanism and Numerical Simulation of High Rockfill Dam[M]. Beijing: Science Press, 2017. (in Chinese)
    [2]
    蒋明镜. 现代土力学研究的新视野-宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jin. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [3]
    COETZEE C J, ELS D N J. Calibration of granular material parameters for DEM modelling and numerical verification by blade-granular material interaction[J]. Journal of Terrame- chanics, 2009, 46(1): 15-26. doi: 10.1016/j.jterra.2008.12.004
    [4]
    周伟, 谢婷蜓, 马刚, 等. 基于颗粒流程序的真三轴应力状态下堆石体的变形和强度特性研究[J]. 岩土力学, 2012, 33(10): 3006-3012, 3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210023.htm

    ZHOU Wei, XIE Ting-ting, MA Gang, et al. Stress and deformation analysis of rockfill in true triaxial stress conditions based on PFC[J]. Rock and Soil Mechanics, 2012, 33(10): 3006-3012, 3080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210023.htm
    [5]
    邵磊, 迟世春, 张勇, 等. 基于颗粒流的堆石料三轴剪切试验研究[J]. 岩土力学, 2013, 34(3): 711-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303017.htm

    SHAO Lei, CHI Shi-chun, ZHANG Yong, et al. Study of triaxial shear tests for rockfill based on particle flow code[J]. Rock and Soil Mechanics, 2013, 34(3): 711-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303017.htm
    [6]
    王永明, 朱晟, 任金明, 等. 筑坝粗粒料力学特性的缩尺效应研究[J]. 岩土力学, 2013, 34(6): 1799-1806, 1823. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm

    WANG Yong-ming, ZHU Sheng, REN Jin-ming, et al. Research on scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2013, 34(6): 1799-1806, 1823. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306041.htm
    [7]
    马幸, 周伟, 马刚, 等. 最小粒径截距对颗粒体数值模拟的影响[J]. 中南大学学报(自然科学版), 2016, 47(1): 166-175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201601024.htm

    MA Xing, ZHOU Wei, MA Gang, et al. Effect of minimum particle size on assembly in numerical simulation[J]. Journal of Central South University (Science and Technology), 2016, 47(1): 166-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201601024.htm
    [8]
    李鹏鹏. 考虑颗粒形状的堆石体缩尺效应研究[D]. 武汉: 武汉大学, 2017.

    LI Peng-peng. Scale Effects of Rockfill Materials Considering Particle Shape[D]. Wuhan: Wuhan University, 2017. (in Chinese)
    [9]
    张宜, 周伟, 马刚, 等. 细颗粒截断粒径对堆石体力学特性影响的数值模拟[J]. 武汉大学学报(工学版), 2017, 50(3): 332-339. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703003.htm

    ZHANG Yi, ZHOU Wei, MA Gang, et al. Effect of minimum particle size on mechanical properties of rockhill materials by numerical simulation[J]. Engineering Journal of Wuhan University, 2017, 50(3): 332-339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201703003.htm
    [10]
    邵晓泉, 迟世春, 陶勇. 堆石料剪切强度与变形的尺寸效应模拟[J]. 岩土工程学报, 2018, 40(10): 1766-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810003.htm

    SHAO Xiao-quan, CHI Shi-chun, TAO Yong. Numerical simulation of size effect on shear strength and deformation behavior of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1766-1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810003.htm
    [11]
    HORN E. The Calibration of Material Properties for Use in Discrete Element Models[D]. Stellenbosch: Stellenbosch University, 2012.
    [12]
    李守巨, 于申, 孙振祥, 等. 基于神经网络的堆石料本构模型参数反演[J]. 计算机工程, 2014, 40(6): 267-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201406058.htm

    LI Shou-ju, YU Shen, SUN Zhen-xiang, et al. Parameter inversion of constitutive model for rockfill materials based on neural network[J]. Computer Engineering, 2014, 40(6): 267-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201406058.htm
    [13]
    马刚. 堆石体的连续-离散耦合分析方法与宏细观力学特性[D]. 武汉: 武汉大学, 2014.

    MA Gang. The Combined Finite-Discrete Element Method of Rockfill Materials and Its Macro- and Micro-Mechanical Behaviors[D]. Wuhan: Wuhan University, 2014. (in Chinese)
    [14]
    LI S J, LI D, CAO L, et al. Parameter estimation approach for particle flow model of rockfill materials using response surface method[J]. International Journal of Computational Materials Science and Engineering, 2015, 04(1): 1550003.
    [15]
    李守巨, 李德, 于申. 基于宏观实验数据的堆石料细观本构模型参数反演[J]. 山东科技大学学报(自然科学版), 2015, 34(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201505004.htm

    LI Shou-ju, LI De, YU Shen. Meso-parameter inversion of constitutive model for rockfill materials based on macro experimental data[J]. Journal of Shandong University of Science and Technology, 2015, 34(5): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201505004.htm
    [16]
    杨杰, 马春辉, 程琳, 等. 基于QGA-SVM的堆石料离散元细观参数标定模型[J]. 水利水电科技进展, 2018, 38(5): 53-58, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201805011.htm

    YANG Jie, MA Chun-hui, CHENG Lin, et al. Mesoscopic parameter calibration model of discrete elements in rockfill material based on QGA-SVM[J]. Advances in Science and Technology of Water Resources, 2018, 38(5): 53-58, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201805011.htm
    [17]
    陈兵, 于沭, 温彦锋, 等. 宽级配粗粒土数值试验微观参数的敏感性分析[J]. 水利学报, 2015, 46(增刊1): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1058.htm

    CHEN Bing, YU Shu, WEN Yan-feng, et al. Sensitivity analysis of micro-parameters on numerical experiments of wide grading coarse-grained soils[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 315-320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1058.htm
    [18]
    CHENG K, WANG Y, YANG Q, et al. Determination of microscopic parameters of quartz sand through tri-axial test using the discrete element method[J]. Computers and Geotechnics, 2017, 92: 22-40.
    [19]
    WENSRICH C M, KATTERFELD A. Rolling friction as a technique for modelling particle shape in DEM[J]. Powder Technology, 2012, 217: 409-417.
    [20]
    AI J, CHEN J F, ROTTER J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282.
    [21]
    邵磊. 基于裂缝扩展细观模拟的堆石料流变特性研究[D]. 大连: 大连理工大学, 2013.

    SHAO Lei. Study on Rheological Property of Rockfill by Meso-Mechanics Simulation Based on Sub-Critical Crack Expansion Theory[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [22]
    ROUX J N, COMBE G. How granular materials deform in quasistatic conditions[J]. AIP Conference Proceedings, 2010, 1227(1): 260-270.
    [23]
    孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm

    KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm
    [24]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [25]
    蒋明镜, 王富周, 朱合华. 单粒组密砂剪切带的直剪试验离散元数值分析[J]. 岩土力学, 2010, 31(1): 253-257, 298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001044.htm

    JIANG Ming-jing, WANG Fu-zhou, ZHU He-hua. Shear band formation in ideal dense sand in direct shear test by discrete element analysis[J]. Rock and Soil Mechanics, 2010, 31(01): 253-257, 298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001044.htm
    [26]
    李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2008.

    LI Yun-yan, HU Chuan-rong. Experiment Design and Data Processing[M]. Beijing: Chemical Industry Press, 2008. (in Chinese)
    [27]
    颜敬, 曾亚武, 高睿, 等. 无黏结材料颗粒流模型的宏细观参数关系研究[J]. 长江科学院院报, 2012, 29(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201205011.htm

    YAN Jing, ZENG Ya-wu, GAO Rui, et al. Relationship between macroscopic and mesoscopic parameters in particle flow model of unbonded material[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(5): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201205011.htm
    [28]
    邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用[J]. 岩土工程学报, 2019, 41(4): 655-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm

    DENG Shu-xin, ZHENG Yong-lai, FENG Li-po, et al. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 655-664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm
  • Cited by

    Periodical cited type(9)

    1. 张慧梅,马志敏,陈世官,王赋宇. 正交-响应面法在PBM细观参数标定中的应用. 水资源与水工程学报. 2024(02): 183-191 .
    2. 刘红帅,张东涛. 基于正交-响应面法的砂土细观参数标定. 吉林大学学报(地球科学版). 2024(04): 1280-1290 .
    3. 姜玥,邹文栋. 基于PFC~(3D)的空心圆柱灰砂岩宏细观参数相关性研究. 煤炭科学技术. 2024(10): 78-89 .
    4. 付旭,侯定贵,李茜,王林台,刘晓立. 软土蠕变颗粒流宏细观参数特征及标定方法. 土工基础. 2023(03): 501-505 .
    5. 王晋伟,迟世春,闫世豪,郭宇,周新杰. 室内缩尺级配堆石料力学参数的表征单元体积. 浙江大学学报(工学版). 2023(07): 1418-1427 .
    6. 张杰,聂如松,黄茂桐,谭永长,肖玲. 基于柔性边界的非饱和接触模型参数标定方法. 工程科学与技术. 2023(06): 132-141 .
    7. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    8. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    9. 徐锦元,张政武. 可调拱梁稳定性分析. 机械研究与应用. 2021(02): 13-17 .

    Other cited types(20)

Catalog

    Article views (297) PDF downloads (352) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return