• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, WANG Hua-ning, LI Guang-shuai, LIAO You-bin, CHEN You-liang, WEI Chao-qun. DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 20-25. DOI: 10.11779/CJGE2020S2004
Citation: JIANG Ming-jing, WANG Hua-ning, LI Guang-shuai, LIAO You-bin, CHEN You-liang, WEI Chao-qun. DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 20-25. DOI: 10.11779/CJGE2020S2004

DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • The strength ratio is an important factor affecting the stability of the surrounding rock during tunnel excavation of deeply-situated composite rock mass. A size-dependent bond contact model is implemented to the software of the two-dimensional distinct element method (DEM) to simulate the tunnel excavation of deeply-situated up-soft/low-hard composite rock mass. The influences of strength ratio on bond breakage, the maximum principal stress and disturbance zone of the surrounding rock are investigated. The results show that the bond breakage ratio and the disturbed area ratio caused by tunnel excavation gradually increase with the increase of strength ratio of composite rock mass, and the bond breakage is mainly caused by bond tensile failure. The maximum principal stress is distributed in teardrop shape in the circumferential direction of the surrounding rock, while in the radial direction it decreases firstly and then increases in the soft rock and increases in the hard rock. Moreover, in the radial direction, with the increase of the strength ratio, the variation range of the maximum principal stress decreases in the hard rock but increases in the soft rock.
  • [1]
    高文艺. 深部复合地层TBM隧道变形时空演化规律研究[D]. 徐州: 中国矿业大学, 2015.

    GAO Wen-yi. Study on Space-time Evolution Laws of Surrounding Rockmass Deformation in Deep Mixed Strata Tunnel Excavated by TBM[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [2]
    黄锋, 周洋, 李天勇, 等. 软硬互层岩体力学特性及破坏形态的室内试验研究[J/OL]. 煤炭学报: 1-10[2020-03-17]. doi: 10.13225/j.cnki.jccs.2019.1388.
    [3]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [4]
    蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [5]
    王志伟, 乔春生, 宋超业. 上软下硬岩质地层浅埋大跨隧道松动压力计算[J]. 岩土力学, 2014, 35(8): 2342-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408030.htm

    WANG Zhi-wei, QIAO Chun-sheng, SONG Chao-ye. Calculation method of relaxation pressure of shallow large span tunnel in up-soft/low-hard rock stratum[J]. Rock and Soil Mechanics, 2014, 35(8): 2342-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408030.htm
    [6]
    JIANG M J, ZHANG N, CUI L, et al. A size-dependent bond failure criterion for cemented granules based on experimental studies[J]. Computers and Geotechnics, 2015, 69: 182-198. doi: 10.1016/j.compgeo.2015.05.007
    [7]
    JIANG M J, LIU W, XI B L, et al. Preliminary DEM analysis on micro-mechanical behavior of the composite cemented granules under complex stress conditions[C]//Proceedings of the 7th International Conference on Discrete Element Methods, 2016, Singapore.
    [8]
    张春深, 陈祥荣, 侯靖, 等. 锦屏二级水电站深埋大理岩力学特性研究[J]. 岩石力学与工程学报, 2010, 29(10): 1999-2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010009.htm

    ZHANG Chun-shen, CHEN Xiang-rong, HOU Jing, et al. Study of mechanical behavior of deep-buried marble at jinping hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1999-2009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010009.htm
    [9]
    MARTIN D C. The strength of massive Lac du Bonnet Granite Around Underground Opeanings[D]. Winnipeg: University of Manitoba, 1993.
    [10]
    黄书岭. 高应力下脆性岩石的力学模型与工程应用研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2008.

    HUANG Shu-ling. Study on Mechanical Model of Brittle Rock under High Stress Condition and Its Engineering Applications[D]. Wuhan: Graduateschool of the Chinese Academy of Sciences (Wuhan Institute of Geotechnical Mechanics), 2008. (in Chinese)
    [11]
    吕品. 锦屏水电站绿片岩段扩挖及落底开挖稳定研究[D]. 大连: 大连理工大学, 2011.

    LÜ Pin. The Research of Enlarged Excavation and Surrounding Rock Stability in The Green Schist Area of Jinping Hydropower Station[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)
    [12]
    CIANTIA M O, CASTELLANZA R, PRISCO C D. Experimental study on the water-induced weakening of calcarenites[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 441-461. doi: 10.1007/s00603-014-0603-z
    [13]
    PARMA M, NOVA R. Effects of bond crushing on the settlements of shallow foundations on soft rocks[J]. Géotechnique, 2011, 61(3): 247-261. doi: 10.1680/geot.7.00183
    [14]
    杨开新, 蒋明镜, 陈有亮, 等. 不同岩性下TBM滚刀破岩过程离散元分析[J]. 水资源与水工程学报, 2019, 30(2): 198-204, 211.

    YANG Kai-xin, JIANG Ming-jing, CHEN You-liang, et al. Discrete element method analysis on rock breaking process induced by TBM cutters under different lithologies[J]. Journal of Water Resources and Water Engineering, 2019, 30(2): 198-204, 211. (in Chinese)
    [15]
    吴渤. 层状岩体隧道围岩扰动区演化与锚固机理研究[D]. 武汉: 中国地质大学, 2016.

    WU Bo. Study on disturbance zone evolution and anchoring mechanism of surrounding rock in layered rock tunnel[D]. Wuhan: China University of Geosciences, 2016. (in Chinese)
    [16]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [17]
    陈贺. 岩石宏微观力学特性及高陡岩质边坡的离散元数值模拟[D]. 上海: 同济大学, 2013.

    CHEN He. Macroscopic and Microscopic Mechanical Properties of Rocks and Discrete Element Numerical Simulation of High-Steep Rock Slopes[D]. Shanghai: Tongji University, 2013. (in Chinese)
    [18]
    蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.

    CAI Mei-feng, Rock Mechanics and Engineering[M]. Beijing: Science Press, 2002. (in Chinese)
    [19]
    赵瑜, 卢义玉, 陈浩. 深埋隧道三心拱洞室平面应变模型试验研究[J]. 土木工程学报, 2010, 43(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201003015.htm

    ZHAO Yu, LU Yi-yu, CHEN Hao. A plane strain modeling study of a three-center arch for deep tunnels[J]. China Civil Engineering Journal, 2010, 43(3): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201003015.htm
    [20]
    JIANG M J, YIN Z Y. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[J]. Tunnelling and Underground Space Technology, 2012, 32(6): 251-259.
  • Cited by

    Periodical cited type(7)

    1. 张明,魏凯祥,年宾,姜福兴,王昆,朱海虎,胡浩. 深井冲击煤层充填工作面区段煤柱宽度研究. 岩石力学与工程学报. 2025(02): 316-330 .
    2. 贺海鸿,张宁,王冰,王常彬,曹安业. 深部复杂覆岩结构煤层开采冲击地压致灾层位判识研究. 煤炭技术. 2024(05): 56-59 .
    3. 崔峰,张随林,刘旭东,来兴平,姬松涛,冯攀飞,贾冲,陆长亮,王昊. 急倾斜巨厚煤层复杂空间结构区微震时空演化规律及诱冲机理. 煤炭学报. 2024(04): 1786-1803 .
    4. 张广超,尹茂胜,周广磊,陶广哲,张照允,闫宪洋,李振国,吕凯. 厚硬岩层下板结构破断应力-能量场积聚演化规律. 中国矿业大学学报. 2024(04): 647-663 .
    5. 夏永学,张晨阳,杜涛涛,周金龙,孙如达,陆闯,潘俊锋. 磨砂射流轴向切顶压裂工艺研发及应用. 煤炭学报. 2024(S1): 36-44 .
    6. 曹安业,窦林名,白贤栖,刘耀琪,杨科,李家卓,王常彬. 我国煤矿矿震发生机理及治理现状与难题. 煤炭学报. 2023(05): 1894-1918 .
    7. 白贤栖,曹安业,刘耀琪,王常彬,杨旭,赵迎春,杨耀. 基于震源机制解析的巨厚覆岩矿震破裂机制. 煤炭学报. 2023(11): 4024-4035 .

    Other cited types(2)

Catalog

    Article views (235) PDF downloads (234) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return