Citation: | ZHANG Fu-guang, NIE Zhuo-chen, CHEN Meng-fei, FENG Huai-ping. DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 456-464. DOI: 10.11779/CJGE202103008 |
[1] |
MASSARSCH K R, FELLENIUS B H. Vibratory compaction of coarse-grained soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 695-709. doi: 10.1139/t02-006
|
[2] |
WANG Y H, LEUNG S C. Characterization of cemented sand by experimental and numerical investigations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(7): 992-1004. doi: 10.1061/(ASCE)1090-0241(2008)134:7(992)
|
[3] |
PORCINO D, MARCIANÒ V, GRANATA R. Static and dynamic properties of a lightly cemented silicate-grouted sand[J]. Canadian Geotechnical Journal, 2012, 49(10): 1117-1133. doi: 10.1139/t2012-069
|
[4] |
DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
|
[5] |
刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
|
[6] |
SANTAMARINA J C, KLEIN A, FAM M A. Soils and Waves[M]. New York: John Wiley and Sons, 2001: 25-54.
|
[7] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: John Wiley and Sons, 2005: 5-33.
|
[8] |
FRYDMAN S, HENDRON D, HORN H, et al. Liquefaction study of cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1980, 106(GT3): 275-297.
|
[9] |
CLOUGH G W, IWABUCHI J, RAD N S, et al. Influence of cementation on liquefaction of sands[J]. Journal of Geotechnical Engineering, 1989, 115(8): 1102-1117. doi: 10.1061/(ASCE)0733-9410(1989)115:8(1102)
|
[10] |
QADIMI A, COOP M R. The undrained cyclic behavior of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750. doi: 10.1680/geot.2007.57.9.739
|
[11] |
PORCINO D, MARCIANÒ V, GRANATA R. Cyclic liquefaction behaviour of a moderately cemented grouted sand under repeated loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 79(Part A): 36-46.
|
[12] |
VRANNA A, TIKA T. Undrained monotonic and cyclic response of weakly cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 04020018. doi: 10.1061/(ASCE)GT.1943-5606.0002246
|
[13] |
RASOULI H, FATAHI B, NIMBALKAR S. Liquefaction and post-liquefaction assessment of lightly cemented sands[J]. Canadian Geotechnical Journal, 2020, 57: 173-188. doi: 10.1139/cgj-2018-0833
|
[14] |
CUNDALL P A, STRACK O D L. Discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[15] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[16] |
DE BONO J P, MCDOWELL G R. Discrete element modelling of one-dimensional compression of cemented sand[J]. Granular Matter, 2014, 16(1): 79-90. doi: 10.1007/s10035-013-0466-0
|
[17] |
ZHANG F G, JIANG M J. Do the normal compression lines of cemented and uncemented geomaterials run parallel or converge to each other after yielding?[J]. European Journal of Environmental and Civil Engineering, 2021, 25(2): 368-386. doi: 10.1080/19648189.2018.1531788
|
[18] |
WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1): 29-44. doi: 10.1139/T07-070
|
[19] |
JIANG M J, ZHANG F G, THORNTON C. A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(16): 1791-1820. doi: 10.1002/nag.2371
|
[20] |
张伏光, 蒋明镜. 胶结砂土强度特性的真三轴试验离散元分析[J]. 岩石力学与工程学报, 2018, 37(6): 1530-1539. doi: 10.13722/j.cnki.jrme.2017.1464
ZHANG Fu-guang, JIANG Ming-jing. Analysis of the strength behaviour of cemented sands in true triaxial test with distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1530-1539. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.1464
|
[21] |
蒋明镜, 孙若晗, 李涛, 等. 微生物处理砂土不排水循环三轴剪切 CFD-DEM模拟[J]. 岩土工程学报, 2020, 42(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001005.htm
JIANG Ming-jing, SUN Ruo-han, LI Tao, et al. CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001005.htm
|
[22] |
SHEN Z F, JIANG M J, THORNTON C. DEM simulation of bonded granular material: Part I contact model and application to cemented sand[J]. Computers and Geotechnics, 2016, 75: 192-209. doi: 10.1016/j.compgeo.2016.02.007
|
[23] |
JIANG M J, ZHANG A, LI T. Distinct element analysis of the microstructure evolution in granular soils under cyclic loading[J]. Granular Matter, 2019, 21: 39. doi: 10.1007/s10035-019-0892-8
|
[24] |
JIANG M J, KONRAD J, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
|
[25] |
JIANG M J, SUN Y G, LI LQ, et al. Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation[J]. Mechanics of Materials, 2012, 55: 1-15. doi: 10.1016/j.mechmat.2012.07.002
|
[26] |
申志福. 深海能源土力学特性三维多尺度数值模拟[D]. 上海: 同济大学, 2016.
SHEN Zhi-fu. Three-Dimensional Multi-Scale Numerical Simulations of the Mechanical Behavior of Methane Hydrate Bearing Sediments[D]. Shanghai: Tongji University, 2016. (in Chinese)
|
[27] |
KUHN M R, RENKEN H E, MIXSELL A D, et al. Investigation of cyclic liquefaction with discrete element simulations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014075. doi: 10.1061/(ASCE)GT.1943-5606.0001181
|
[28] |
THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
|
[29] |
BOLTON M D, NAKATA Y, CHENG Y P. Micro- and macro-mechanical behaviour of DEM crushable materials[J]. Géotechnique, 2008, 58(6): 471-480. doi: 10.1680/geot.2008.58.6.471
|
[30] |
SAZZAD M M, SUZUKI K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM[J]. Granular Matter, 2013, 15(5): 583-593. doi: 10.1007/s10035-013-0422-z
|
[31] |
MARTIN E L, THORNTON C, UTILI S. Micromechanical investigation of liquefaction of granular media by cyclic 3D DEM tests[J]. Géotechnique, 2020, 70(10): 906-915. doi: 10.1680/jgeot.18.P.267
|
[1] | PAN Kun, LI Peipei, CAO Yi, WU Qixin, YANG Zhongxuan. Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008 |
[2] | A discrete element simulation method of clayey grain-cementing type methane hydrate bearing sediment accounting for pore size and physicochemical properties[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240845 |
[3] | JIANG Ming-jing, SUN Ruo-han, LI Tao, YANG Tao, TAN Ya-fei-ou. CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 20-28. DOI: 10.11779/CJGE202001002 |
[4] | JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. DOI: 10.11779/CJGE201902001 |
[5] | ZHANG Fu-guang, JIANG Ming-jing. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1424-1432. DOI: 10.11779/CJGE201808007 |
[6] | ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023 |
[7] | JIANG Ming-jing, LI Li-qing, SHEN Zhi-fu. Evaluation of double-shearing type kinematic models for granular flows by use of distinct element methods for non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 619-626. |
[8] | ZHANG Chong, JIN Feng. 3D distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1536-1543. |
[9] | ZHANG Chong, JIN Feng, HOU Yanli. 3-D simple deformable distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 159-163. |
[10] | HOU Yanli, ZHANG Chong, ZHANG Chuhan, JIN Feng. Simulation of upward-sliding failure of interface in arch dams by deformable distinct elements[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 657-661. |
1. |
周恩全,姚缘,王龙,卜春尧,伊思航. 基于粒间接触关系的饱和砂土液化特性研究. 防灾减灾工程学报. 2024(02): 450-458 .
![]() | |
2. |
高霞,王楠楠,秦程,张保勇,蒋静宇,吴强. 柔性边界三轴压缩条件下含瓦斯水合物煤体宏细观力学性质. 煤炭学报. 2024(06): 2691-2710 .
![]() | |
3. |
江春林,王光进,王琦. 考虑真实颗粒形状的尾矿动力特性离散元研究. 中南大学学报(自然科学版). 2024(07): 2751-2762 .
![]() | |
4. |
童立红,傅力,徐长节. 颗粒旋转对颗粒材料系统抗剪强度影响研究. 工程力学. 2024(11): 125-133 .
![]() | |
5. |
许万强,孔秋平,费丽珊,俞缙,罗承浩,郭琼玲. 水泥固化海砂抗液化试验及细观数值模拟研究. 福建建筑. 2023(07): 88-94+136 .
![]() | |
6. |
李涛,唐小微,曾铃,杨钢. 饱和砂-黏及砂-粉-黏混合土动孔压特性. 岩土工程学报. 2023(S2): 276-283 .
![]() |