Citation: | PAN Kun, LI Peipei, CAO Yi, WU Qixin, YANG Zhongxuan. Cyclic liquefaction behavior of silty sand considering initial static shear effect: a DEM investigation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 417-427. DOI: 10.11779/CJGE20231008 |
[1] |
蔡袁强, 于玉贞, 袁晓铭, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49(5): 9-30.
CAI Yuanqiang, YU Yuzhen, YUAN Xiaoming, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49(5): 9-30. (in Chinese)
|
[2] |
SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
|
[3] |
SIVATHAYALAN S, HA D. Effect of static shear stress on the cyclic resistance of sands in simple shear loading[J]. Canadian Geotechnical Journal, 2011, 48(10): 1471-1484. doi: 10.1139/t11-056
|
[4] |
冯大阔, 张建民. 初始静剪应力对粗粒土与结构接触面循环力学特性的影响[J]. 岩土力学, 2012, 33(8): 2277-2282, 2290. doi: 10.3969/j.issn.1000-7598.2012.08.007
FENG Dakuo, ZHANG Jianmin. Influence of initial static shear stress on cycle mechanical behavior of interface between structure and gravelly soil[J]. Rock and Soil Mechanics, 2012, 33(8): 2277-2282, 2290. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.08.007
|
[5] |
潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84. doi: 10.11779/CJGE2017S1016
PAN Kun, YANG Zhongxuan. Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese) doi: 10.11779/CJGE2017S1016
|
[6] |
PAN K, YANG Z X. Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand[J]. Acta Geotechnica, 2018, 13(2): 473-487.
|
[7] |
LEE KENNETH L, BOLTON S H. Dynamic strength of anisotropically consolidated sand[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(5): 169-190. doi: 10.1061/JSFEAQ.0001019
|
[8] |
SUAZO G, FOURIE A, DOHERTY J, et al. Effects of confining stress, density and initial static shear stress on the cyclic shear response of fine-grained unclassified tailings[J]. Géotechnique, 2016, 66(5): 401-412. doi: 10.1680/jgeot.15.P.032
|
[9] |
张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202.
ZHANG Chenyang, CHEN Min, HU Mingjian, et al. Effect of fine particle composition content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese)
|
[10] |
陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2): 507-516.
CHEN Yulong, ZHANG Yuning. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2): 507-516. (in Chinese)
|
[11] |
AMINI F, QI G Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3): 208-217. doi: 10.1061/(ASCE)1090-0241(2000)126:3(208)
|
[12] |
ZHOU G Y, PAN K, YANG Z X. Energy-based assessment of cyclic liquefaction behavior of clean and silty sand under sustained initial stress conditions[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107609. doi: 10.1016/j.soildyn.2022.107609
|
[13] |
PORCINO D D, DIANO V, TOMASELLO G. Effect of non-plastic fines on cyclic shear strength of sand under an initial static shear stress[M]//Springer Series in Geomechanics and Geoengineering. Cham: Springer International Publishing, 2018: 597-601.
|
[14] |
左康乐, 顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究[J]. 岩土工程学报, 2023, 45(7): 1461-1470. doi: 10.11779/CJGE20220401
ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. (in Chinese) doi: 10.11779/CJGE20220401
|
[15] |
ZHANG L, EVANS T M. Investigation of initial static shear stress effects on liquefaction resistance using discrete element method simulations[J]. International Journal of Geomechanics, 2020, 20(7): 04020087. doi: 10.1061/(ASCE)GM.1943-5622.0001720
|
[16] |
DAI B B, YANG J, LUO X D. A numerical analysis of the shear behavior of granular soil with fines[J]. Particuology, 2015, 21: 160-172. doi: 10.1016/j.partic.2014.08.010
|
[17] |
GONG J, WANG X, LI L, et al. DEM study of the effect of fines content on the small-strain stiffness of gap-graded soils[J]. Computers and Geotechnics, 2019, 112: 35-40. doi: 10.1016/j.compgeo.2019.04.008
|
[18] |
王涛, 朱俊高, 刘斯宏. 不同细料含量土石混合料塑性行为离散元模拟[J]. 力学学报, 2022, 54(4): 1075-1084.
WANG Tao, ZHU Jungao, LIU Sihong. DEM simulation on plasticity behavior of soil-rock mixtures with different fine contents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. (in Chinese)
|
[19] |
ASTM D4767-88. Standard Test Method for Consolidated-Undrained Triaxial Compression Test on Cohesive Soils[S]. 1988.
|
[20] |
SHIRE T, O'SULLIVAN C, HANLEY K J, et al. Fabric and effective stress distribution in internally unstable soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014072. doi: 10.1061/(ASCE)GT.1943-5606.0001184
|
[21] |
DA CRUZ F, EMAM S, PROCHNOW M, et al. Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 021309. doi: 10.1103/PhysRevE.72.021309
|
[22] |
吴越, 杨仲轩, 徐长节. 初始组构各向异性对砂土力学特性及临界状态的影响[J]. 岩土力学, 2016, 37(9): 2569-2576.
WU Yue, YANG Zhongxuan, XU Changjie. Effects of initial fabric anisotropy on mechanical behavior and critical state of granular soil[J]. Rock and Soil Mechanics, 2016, 37(9): 2569-2576. (in Chinese)
|
[23] |
YANG J, WEI L M. Collapse of loose sand with the addition of fines: the role of particle shape[J]. Géotechnique, 2012, 62(12): 1111-1125. doi: 10.1680/geot.11.P.062
|
[24] |
BEEN K, JEFFERIES M G. Discussion: a state parameter for sands[J]. Géotechnique, 1986, 36(1): 123-132. doi: 10.1680/geot.1986.36.1.123
|
[25] |
王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.
WANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426. (in Chinese)
|
[26] |
YANG J, SZE H Y. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions[J]. Géotechnique, 2011, 61(1): 59-73. doi: 10.1680/geot.9.P.019
|
[27] |
THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
|
[28] |
SHIRE T, O'SULLIVAN C, HANLEY K J. The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials[J]. Granular Matter, 2016, 18(3): 52. doi: 10.1007/s10035-016-0654-9
|
[29] |
ZHOU W, WU W, MA G, et al. Undrained behavior of binary granular mixtures with different fines contents[J]. Powder Technology, 2018, 340: 139-153. doi: 10.1016/j.powtec.2018.09.022
|
[30] |
MINH N H, CHENG Y P, THORNTON C. Strong force networks in granular mixtures[J]. Granular Matter, 2014, 16(1): 69-78. doi: 10.1007/s10035-013-0455-3
|
[31] |
GONG J, NIE Z H, ZHU Y G, et al. Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM[J]. Computers and Geotechnics, 2019, 106: 161-176. doi: 10.1016/j.compgeo.2018.10.021
|
[1] | Green, Efficient, and Safe Extraction Methods of methane-hydrate in the Qiongdongnan seabed, China[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231269 |
[2] | Coupling analysis on mechanical properties of near-well interface of methane hydrate bearing sediments under depressurization exploitation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231245 |
[3] | KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463 |
[4] | CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015 |
[5] | WANG Gang, XIAO Zhi-yong, WANG Chang-sheng, JIANG Yu-jing, YU Jun-hong. Gas transport in coal seams based on non-equilibrium state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1512-1520. DOI: 10.11779/CJGE202208016 |
[6] | XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007 |
[7] | QI Xian-yin, WANG Wei. Anisotropic permeability model for coal containing methane based on anisotropic structure ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1030-1037. DOI: 10.11779/CJGE201706008 |
[8] | JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. |
[9] | YANG Xinle, ZHANG Yongli, LI Chengquan, LI Weikang. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814. |
[10] | WANG Lianguo, MIAO Xiexing, WANG Xuezhi, LI Qingfeng. Analysis on damaged width of coal pillar in strip extraction[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 767-769. |