• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
Citation: XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007

Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction

More Information
  • Received Date: January 24, 2021
  • Available Online: November 30, 2022
  • Studying the permeability of coal seam is of guiding significance for the applicability and feasibility of rational mining of coalbed methane and other energy sources. A large number of current permeability models are established based on the elastic and adsorption strains. However, these models often treat the matrix as a rigid body and assume that the adsorption deformation is fully regulated by the fracture aperture when considering these two strains. The matrix deformation is neglected in predicting permeability, and the effect of adsorption swelling is also overestimated. Therefore, a new permeability model is proposed to predict reservoir permeability under different boundary conditions. The model proposes an internal expansion coefficient f to correct the effects of matrix adsorption on fracture aperture and external stress, and considers the deformation behavior of the fracture and matrix under the effective stress. To compare the effects of matrix deformation and stress correction on permeability, the three models for permeability under different boundary conditions are validated through the field data and laboratory data by comparing the model without considering stress correction and the model without considering the deformation of the matrix itself. The results show that the stress correction has a more significant effect on the permeability evolution under uniaxial strain, and that the model without consideration of both the stress correction and the deformation of the matrix will obtain higher internal expansion coefficient f. Finally, the proposed model is further compared with four classical models to illustrate again its superiority.
  • [1]
    VILLICAÑA-GARCÍA E, PONCE-ORTEGA J M. Sustainable strategic planning for a national natural gas energy system accounting for unconventional sources[J]. Energy Conversion and Management, 2019, 181: 382-397.
    [2]
    杨新乐, 张永利, 李成全, 等. 考虑温度影响下煤层气解吸渗流规律试验研究[J]. 岩土工程学报, 2008, 30(12): 1811-1814.

    YANG Xin-le, ZHANG Yong-li, LI Cheng-quan, et al. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814. (in Chinese)
    [3]
    CHEN Z W, LIU J S, PAN Z J, et al. Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis[J]. International Journal of Greenhouse Gas Control, 2012, 8: 101-110.
    [4]
    亓宪寅, 杨典森, 陈卫忠. 煤层气解吸滞后定量分析模型[J]. 煤炭学报, 2016, 41(增刊2): 475-481.

    QI Xian-yin, YANG Dian-sen, CHEN Wei-zhong. Research of a bidisperse diffusion model based on adsorption hysteresis[J]. Journal of China Coal Society, 2016, 41(S2): 475-481. (in Chinese)
    [5]
    GRAY I. Reservoir engineering in coal seams: part 1 the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(1): 28-34.
    [6]
    SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals[C]//SPE Rocky Mountain Regional Meeting. Casper, 1992.
    [7]
    SEIDLE J R, HUITT L. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]//International Meeting on Petroleum Engineering. Beijing, 1995.
    [8]
    PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539-544.
    [9]
    SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1-16.
    [10]
    SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation & Engineering, 2005, 8(4): 291-299.
    [11]
    CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181-1202.
    [12]
    CONNELL L D. A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage[J]. International Journal of Coal Geology, 2016, 162: 169-182.
    [13]
    ROBERTSON E P. Measurement and modeling of sorption- induced strain and permeability changes in coal[R]. Idaho National Laboratory, 2005, INL/EXT-06-11832.
    [14]
    LIU H H, RUTQVIST J. A new coal-permeability model: internal swelling stress and fracture-matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157-171.
    [15]
    GUO P K, CHENG Y P, JIN K, et al. Impact of effective stress and matrix deformation on the coal fracture permeability[J]. Transport in Porous Media, 2014, 103(1): 99-115.
    [16]
    ZHOU Y B, LI Z H, YANG Y L, et al. Evolution of coal permeability with cleat deformation and variable Klinkenberg effect[J]. Transport in Porous Media, 2016, 115(1): 153-167.
    [17]
    LIU T, LIN B Q, YANG W. Impact of matrix-fracture interactions on coal permeability: model development and analysis[J]. Fuel, 2017, 207: 522-532.
    [18]
    JIANG C Z, ZHAO Z F, ZHANG X W, et al. Controlling effects of differential swelling index on evolution of coal permeability[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 461-472.
    [19]
    秘昭旭, 王福刚, 石娜, 等. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871.

    MI Zhao-xu, WANG Fu-gang, SHI Na, et al. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. (in Chinese)
    [20]
    ZANG J, WANG K, ZHAO Y X. Evaluation of gas sorption-induced internal swelling in coal[J]. Fuel, 2015, 143: 165-172.
    [21]
    WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668-678.
    [22]
    ROBERTSON E P, CHRISTIANSEN R L. A permeability model for coal and other fractured, sorptive-elastic media[J]. SPE Journal, 2008, 13(3): 314-324.
    [23]
    WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255.
    [24]
    张玉军, 张维庆. 一种双重孔隙介质水-应力耦合模型及其有限元分析[J]. 岩土工程学报, 2010, 32(3): 325-329.

    ZHANG Yu-jun, ZHANG Wei-qing. Coupled hydro- mechanical model and FEM analyses for dual-porosity media[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 325-329. (in Chinese)
    [25]
    张宏学. 页岩储层渗流—应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015.

    ZHANG Hong-xue. Seepage and Stress Coupling Model for Shale Reservoir and Its Application[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [26]
    CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223.
    [27]
    WANG S G, ELSWORTH D, LIU J S. A mechanistic model for permeability evolution in fractured sorbing media[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6). doi: 10.1029/2011jb008855.
    [28]
    LIU J S, CHEN Z W, ELSWORTH D, et al. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology, 2010, 83(1): 21-30.
    [29]
    MASSAROTTO P, GOLDING S, RUDOLPH V. Constant volume CBM reservoirs: an important principle[C]//2009 International Coalbed & Shale Gas Symposium, 2009.
    [30]
    潘哲军, 卢克·康奈尔. 煤的膨胀和收缩在二氧化碳增产煤层甲烷过程中的影响[J]. 中国煤层气, 2007, 4(1): 7-10.

    PAN Zhe-jun, CONNELL Luke. Effects of coal matrix shrinkage/swelling on enhanced CBM recovery through CO2 sequestration[J]. China Coalbed Methane, 2007, 4(1): 7-10. (in Chinese)
    [31]
    CHEN M, CHEN Z D. Effective stress laws for multi-porosity media[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1207-1213.
    [32]
    ZHANG J C, ROEGIERS J C, BAI M. Dual-porosity elastoplastic analyses of non-isothermal one-dimensional consolidation[J]. Geotechnical & Geological Engineering, 2004, 22(4): 589-610.
    [33]
    LIU Q Q, CHENG Y P, ZHOU H X, et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and Klinkenberg effects[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1163-1180.
    [34]
    LIU T, LIN B Q, YANG W, et al. Coal permeability evolution and gas migration under non-equilibrium state[J]. Transport in Porous Media, 2017, 118(3): 393-416.
    [35]
    PINI R, OTTIGER S, BURLINI L, et al. Role of adsorption and swelling on the dynamics of gas injection in coal[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B4): B04203.
  • Cited by

    Periodical cited type(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 .
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 .
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 .
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 .
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    Other cited types(5)

Catalog

    Article views (372) PDF downloads (125) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return