Citation: | XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007 |
[1] |
VILLICAÑA-GARCÍA E, PONCE-ORTEGA J M. Sustainable strategic planning for a national natural gas energy system accounting for unconventional sources[J]. Energy Conversion and Management, 2019, 181: 382-397.
|
[2] |
杨新乐, 张永利, 李成全, 等. 考虑温度影响下煤层气解吸渗流规律试验研究[J]. 岩土工程学报, 2008, 30(12): 1811-1814.
YANG Xin-le, ZHANG Yong-li, LI Cheng-quan, et al. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814. (in Chinese)
|
[3] |
CHEN Z W, LIU J S, PAN Z J, et al. Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis[J]. International Journal of Greenhouse Gas Control, 2012, 8: 101-110.
|
[4] |
亓宪寅, 杨典森, 陈卫忠. 煤层气解吸滞后定量分析模型[J]. 煤炭学报, 2016, 41(增刊2): 475-481.
QI Xian-yin, YANG Dian-sen, CHEN Wei-zhong. Research of a bidisperse diffusion model based on adsorption hysteresis[J]. Journal of China Coal Society, 2016, 41(S2): 475-481. (in Chinese)
|
[5] |
GRAY I. Reservoir engineering in coal seams: part 1 the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(1): 28-34.
|
[6] |
SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals[C]//SPE Rocky Mountain Regional Meeting. Casper, 1992.
|
[7] |
SEIDLE J R, HUITT L. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]//International Meeting on Petroleum Engineering. Beijing, 1995.
|
[8] |
PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539-544.
|
[9] |
SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1-16.
|
[10] |
SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation & Engineering, 2005, 8(4): 291-299.
|
[11] |
CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181-1202.
|
[12] |
CONNELL L D. A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage[J]. International Journal of Coal Geology, 2016, 162: 169-182.
|
[13] |
ROBERTSON E P. Measurement and modeling of sorption- induced strain and permeability changes in coal[R]. Idaho National Laboratory, 2005, INL/EXT-06-11832.
|
[14] |
LIU H H, RUTQVIST J. A new coal-permeability model: internal swelling stress and fracture-matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157-171.
|
[15] |
GUO P K, CHENG Y P, JIN K, et al. Impact of effective stress and matrix deformation on the coal fracture permeability[J]. Transport in Porous Media, 2014, 103(1): 99-115.
|
[16] |
ZHOU Y B, LI Z H, YANG Y L, et al. Evolution of coal permeability with cleat deformation and variable Klinkenberg effect[J]. Transport in Porous Media, 2016, 115(1): 153-167.
|
[17] |
LIU T, LIN B Q, YANG W. Impact of matrix-fracture interactions on coal permeability: model development and analysis[J]. Fuel, 2017, 207: 522-532.
|
[18] |
JIANG C Z, ZHAO Z F, ZHANG X W, et al. Controlling effects of differential swelling index on evolution of coal permeability[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 461-472.
|
[19] |
秘昭旭, 王福刚, 石娜, 等. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871.
MI Zhao-xu, WANG Fu-gang, SHI Na, et al. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. (in Chinese)
|
[20] |
ZANG J, WANG K, ZHAO Y X. Evaluation of gas sorption-induced internal swelling in coal[J]. Fuel, 2015, 143: 165-172.
|
[21] |
WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668-678.
|
[22] |
ROBERTSON E P, CHRISTIANSEN R L. A permeability model for coal and other fractured, sorptive-elastic media[J]. SPE Journal, 2008, 13(3): 314-324.
|
[23] |
WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255.
|
[24] |
张玉军, 张维庆. 一种双重孔隙介质水-应力耦合模型及其有限元分析[J]. 岩土工程学报, 2010, 32(3): 325-329.
ZHANG Yu-jun, ZHANG Wei-qing. Coupled hydro- mechanical model and FEM analyses for dual-porosity media[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 325-329. (in Chinese)
|
[25] |
张宏学. 页岩储层渗流—应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015.
ZHANG Hong-xue. Seepage and Stress Coupling Model for Shale Reservoir and Its Application[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
|
[26] |
CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223.
|
[27] |
WANG S G, ELSWORTH D, LIU J S. A mechanistic model for permeability evolution in fractured sorbing media[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6). doi: 10.1029/2011jb008855.
|
[28] |
LIU J S, CHEN Z W, ELSWORTH D, et al. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology, 2010, 83(1): 21-30.
|
[29] |
MASSAROTTO P, GOLDING S, RUDOLPH V. Constant volume CBM reservoirs: an important principle[C]//2009 International Coalbed & Shale Gas Symposium, 2009.
|
[30] |
潘哲军, 卢克·康奈尔. 煤的膨胀和收缩在二氧化碳增产煤层甲烷过程中的影响[J]. 中国煤层气, 2007, 4(1): 7-10.
PAN Zhe-jun, CONNELL Luke. Effects of coal matrix shrinkage/swelling on enhanced CBM recovery through CO2 sequestration[J]. China Coalbed Methane, 2007, 4(1): 7-10. (in Chinese)
|
[31] |
CHEN M, CHEN Z D. Effective stress laws for multi-porosity media[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1207-1213.
|
[32] |
ZHANG J C, ROEGIERS J C, BAI M. Dual-porosity elastoplastic analyses of non-isothermal one-dimensional consolidation[J]. Geotechnical & Geological Engineering, 2004, 22(4): 589-610.
|
[33] |
LIU Q Q, CHENG Y P, ZHOU H X, et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and Klinkenberg effects[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1163-1180.
|
[34] |
LIU T, LIN B Q, YANG W, et al. Coal permeability evolution and gas migration under non-equilibrium state[J]. Transport in Porous Media, 2017, 118(3): 393-416.
|
[35] |
PINI R, OTTIGER S, BURLINI L, et al. Role of adsorption and swelling on the dynamics of gas injection in coal[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B4): B04203.
|
1. |
肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 .
![]() | |
2. |
杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
![]() | |
3. |
王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 .
![]() | |
4. |
姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
![]() | |
5. |
龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
![]() | |
6. |
王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .
![]() | |
7. |
刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 .
![]() | |
8. |
孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 .
![]() | |
9. |
亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 .
![]() | |
10. |
荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 .
![]() | |
11. |
王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 .
![]() | |
12. |
林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 .
![]() | |
13. |
程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 .
![]() |