• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015
Citation: CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015

Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions

More Information
  • Received Date: August 11, 2021
  • Available Online: December 11, 2022
  • The evolution of dynamic permeability is an important basis for improving the production of coal bed methane. In order to obtain the influences of the softening behavior of coal from matrix-fracture pressure interactions on the evolution of its permeability, a dual-pore permeability model with modulus reduction ratio from differential pressure is obtained through theoretical analysis and is validated based on the permeability transient method tests and the finite element numerical simulation software COMSOL. The experimental results show that the strain is divided into the initial, rapid growth and equilibrium phases based on the characteristics of the curve change. During the rapid growth phase, the slope of the strain curve increases from 1 to 3 MPa with slopes of 83.77, 270.54, 440.92 m/s respectively. The modulus-softening coefficient is a function of the strain and its value increases. Furthermore, a dual-pore permeability model with modulus-softening coefficient is obtained by proposing a conceptual model for open and closed fractures. The experimental data are consistent with the results of the improved permeability model, demonstrating that the modulus-softening coefficient dominates the dynamic evolution of the permeability. Finally, the numerical simulation method can be used to monitor the pressure in the coal matrix compared to the experimental method. Thus, the pressure difference between the matrix and the fracture reveals the mechanism of permeability evolution in coal samples.
  • [1]
    WANG C G, ZHANG J D, CHEN J G, et al. Understanding competing effect between sorption swelling and mechanical compression on coal matrix deformation and its permeability[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138(6): 104639–104651.
    [2]
    陈月霞, 许江, 褚廷湘, 等. 相似煤储层瓦斯压力计算模型及其空间分布特征[J]. 中国矿业大学学报, 2021, 50(3): 606–612. doi: 10.13247/j.cnki.jcumt.001292

    CHEN Yue-xia, XU Jiang, CHU Ting-xiang, et al. Calculation model of gas pressure in similar coal reservoir and its spatial distribution characteristics[J]. Journal of China University of Mining & Technology, 2021, 50(3): 606–612. (in Chinese) doi: 10.13247/j.cnki.jcumt.001292
    [3]
    秘昭旭, 王福刚, 石娜, 等. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17356.shtml

    MI Zhao-xu, WANG Fu-gang, SHI Na, et al. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864–871. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17356.shtml
    [4]
    LIU J S, CHEN Z W, ELSWORTH D, et al. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology, 2010, 83(1): 21–30. doi: 10.1016/j.coal.2010.04.006
    [5]
    肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml

    XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml
    [6]
    ANGGARA F, SASAKI K, SUGAI Y. The correlation between coal swelling and permeability during CO2 sequestration: a case study using Kushiro low rank coals[J]. International Journal of Coal Geology, 2016, 166(9): 62–70.
    [7]
    BOTTOMLEY W, FURNISS J P, RAZA S S, et al. Characterising the dependence of coal permeability to methane adsorption, pore pressure and stress: laboratory testing of Walloon coals from the surat basin[C]// SPE/IATMA Asia Pacific Oil and Gas Conference. Jakarta, 2017: 18675–18687.
    [8]
    BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research Atmospheres, 1968, 73(6): 2225–2236. doi: 10.1029/JB073i006p02225
    [9]
    KUMAR H, ELSWORTH D, LIU J S, et al. Optimizing enhanced coalbed methane recovery for unhindered production and CO2 injectivity[J]. International Journal of Greenhouse Gas Control, 2012, 11(11): 86–97.
    [10]
    KUMAR H, ELSWORTH D, LIU J S, et al. Permeability evolution of propped artificial fractures in coal on injection of CO2[J]. Journal of Petroleum Science and Engineering, 2015, 133(9): 695–704.
    [11]
    FENG R M, HARPALANI S, PANDEY R. Evaluation of various pulse-decay laboratory permeability measurement techniques for highly stressed coals[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 297–308. doi: 10.1007/s00603-016-1109-7
    [12]
    VIETE D R, RANJITH P G. The effect of CO2 on the geomechanical and permeability behaviour of brown coal: implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology, 2006, 66(3): 204–216. doi: 10.1016/j.coal.2005.09.002
    [13]
    LARSEN J W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology, 2004, 57(1): 63–70. doi: 10.1016/j.coal.2003.08.001
    [14]
    SALARI M R, SAEB S, WILLAM K J, et al. A coupled elastoplastic damage model for geomaterials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(27/28/29): 2625–2643.
    [15]
    HU S B, WANG E Y, KONG X G. Damage and deformation control equation for gas-bearing coal and its numerical calculation method[J]. Journal of Natural Gas Science and Engineering, 2015, 25(7): 166–179.
    [16]
    WANG E Y, KONG X G, HU S B, et al. Multi-scale fractured coal gas–solid coupling model and its applications in engineering projects[J]. Transport in Porous Media, 2018, 121(3): 703–724. doi: 10.1007/s11242-017-0981-2
    [17]
    CHEN D, PAN Z J, SHI J Q, et al. A novel approach for modelling coal permeability during transition from elastic to post-failure state using a modified logistic growth function[J]. International Journal of Coal Geology, 2016, 163(6): 132–139.
    [18]
    CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
    [19]
    ZHANG X M, ZHANG D M, LEO C J, et al. Damage evolution and post-peak gas permeability of raw coal under loading and unloading conditions[J]. Transport in Porous Media, 2017, 117(3): 465–480. doi: 10.1007/s11242-017-0842-z
    [20]
    ZHU W C, WEI C H, LI S, et al. Numerical modeling on destress blasting in coal seam for enhancing gas drainage[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59(4): 179–190.
    [21]
    ZHENG C S, KIZIL M, CHEN Z W, et al. Effects of coal damage on permeability and gas drainage performance[J]. International Journal of Mining Science and Technology, 2017, 27(5): 783–786. doi: 10.1016/j.ijmst.2017.07.009
    [22]
    WANG L S, CHEN Z W, WANG C G, et al. Reassessment of coal permeability evolution using steady-state flow methods: the role of flow regime transition[J]. International Journal of Coal Geology, 2019, 211(7): 103210–103223.
    [23]
    WANG C G, ZANG Y X, WANG L S, et al. Interaction of cleat-matrix on coal permeability from experimental observations and numerical analysis[J]. Geofluids, 2019, 19(11): 1–15.
    [24]
    刘江峰, 倪宏阳, 浦海, 等. 多孔介质气体渗透率测试理论、方法、装置及应用[J]. 岩石力学与工程学报, 2021, 40(1): 137–146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101013.htm

    LIU Jiang-feng, NI Hong-yang, PU Hai, et al. Test theory, method and device of gas permeability of porous media and the application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 137–146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101013.htm
    [25]
    CHEN Z W, PAN Z J, LIU J S, et al. Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: experimental observations[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1284–1293.
    [26]
    XIE H C, NI G H, LI S, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal[J]. Fuel, 2019, 253(10): 741–753.
    [27]
    JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of Rock Mechanics[M]. Oxford: Wiley-Blackwell Publishing, 2007: 312–465.
    [28]
    LIU J S, WANG J G, CHEN Z W, et al. Impact of transition from local swelling to macro swelling on the evolution of coal permeability[J]. International Journal of Coal Geology, 2011, 88(1): 31–40.
    [29]
    ZHANG H B, LIU J S, ELSWORTH D. How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1226–1236.
    [30]
    RANJBAR E, HASSANZADEH H. Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media[J]. Advances in Water Resources, 2011, 34(5): 627–639.
  • Cited by

    Periodical cited type(2)

    1. 赵文杰,赵洪宝,荆士杰. 深部储层岩石渗流的滑脱效应研究——以煤和砂岩为例. 岩石力学与工程学报. 2024(09): 2189-2200 .
    2. 肖智勇,王刚,刘杰,邓华锋,姜枫,郑程程. 热–流–固耦合作用下含水煤层渗透率模型建立及应用研究. 岩石力学与工程学报. 2024(12): 3044-3057 .

    Other cited types(2)

Catalog

    Article views (176) PDF downloads (22) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return