• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012
Citation: XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012

Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference

More Information
  • Received Date: October 15, 2023
  • Available Online: July 23, 2024
  • During the process of coalbed methane (CBM) extraction, gas pressure difference will exist for a long time due to different permeabilities between fracture and matrix, which makes coal in non-equilibrium state. The interaction between matrix and fracture in non-equilibrium state is constantly changing. At present, most studies do not fully explain the relationship between matrix adsorption deformation and change of fracture aperture. Therefore, a new non-equilibrium factor related to gas pressure difference is defined to describe the influence of matrix adsorption deformation on change of fracture aperture and coal deformation at different time. A theoretical model for non-equilibrium evolution of coal permeability is established, which includes the whole process from the initial equilibrium to the final one. Furthermore, the model is verified through the experimental data, and the spatial and temporal distribution of gas pressure and the evolution of coal permeability during gas injection and extraction are analyzed by the numerical simulation. The results show that: (1) The change of matrix pore pressure lags behind that of fracture pressure. The gas pressure difference exists for a long time, and its size increases rapidly from 0 and then slowly decreases to 0. (2) The permeability evolution can be divided into five stages. The first and the last stages represent the equilibrium state, the middle three stages represent the non-equilibrium state, and the permeability changes non-monotonically during the non-equilibrium evolution process. (3) The ratio of matrix width to matrix bridge width will affect the variation amplitude of permeability, and the different boundary conditions used in coal reservoir will affect the variation amplitude and the final value of permeability. The results are of certain guiding significance for CBM extraction reasonably.
  • [1]
    XIAO Z Y, WANG G, WANG C S, et al. Permeability evolution and gas flow in wet coal under non-equilibrium state: Considering both water swelling and process-based gas swelling[J]. International Journal of Mining Science and Technology, 2023, 33(5): 585-599. doi: 10.1016/j.ijmst.2022.11.012
    [2]
    ROBERTSON E. Measurement and modeling of sorption- induced strain and permeability changes in coal[R]. Idaho Falls: Idaho National Laboratory, 2005.
    [3]
    SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals[C]// Proceedings of SPE Rocky Mountain Regional Meeting. Casper, 1992.
    [4]
    PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[C]// SPE Annual Technical Conference and Exhibition. Colorado, 1996: 539-544.
    [5]
    SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1-16. doi: 10.1023/B:TIPM.0000018398.19928.5a
    [6]
    WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668-678. doi: 10.1016/j.ijggc.2010.02.004
    [7]
    WU Y, LIU J S, CHEN Z W, et al. A dual poroelastic model for CO2-enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2011, 86(2/3): 177-189.
    [8]
    KUMAR H, ELSWORTH D, MATHEWS J P, et al. Effect of CO2 injection on heterogeneously permeable coalbed reservoirs[J]. Fuel, 2014, 135: 509-521. doi: 10.1016/j.fuel.2014.07.002
    [9]
    张宏学. 页岩储层渗流-应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015.

    ZHANG Hongxue. Seepage-Stress Coupling Model of Shale Reservoir and Its Application[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [10]
    LIU J S, CHEN Z W, ELSWORTH D, et al. Interactions of multiple processes during CBM extraction: a critical review[J]. International Journal of Coal Geology, 2011, 87(3/4): 175-189.
    [11]
    LIU H H, RUTQVIST J. A new coal-permeability model: internal swelling stress and fracture–matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157-171. doi: 10.1007/s11242-009-9442-x
    [12]
    LU S Q, CHENG Y P, LI W. Model development and analysis of the evolution of coal permeability under different boundary conditions[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 129-138. doi: 10.1016/j.jngse.2016.02.049
    [13]
    LIU T, LIN B Q, YANG W. Impact of matrix–fracture interactions on coal permeability: Model development and analysis[J]. Fuel, 2017, 207: 522-532. doi: 10.1016/j.fuel.2017.06.125
    [14]
    肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209-2219. doi: 10.11779/CJGE202112007

    XIAO Zhiyong, WANG Changsheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. (in Chinese) doi: 10.11779/CJGE202112007
    [15]
    LIU J S, WANG J G, CHEN Z W, et al. Impact of transition from local swelling to macro swelling on the evolution of coal permeability[J]. International Journal of Coal Geology, 2011, 88(1): 31-40. doi: 10.1016/j.coal.2011.07.008
    [16]
    王刚, 肖智勇, 王长盛, 等. 基于非平衡状态的煤层中气体运移规律研究[J]. 岩土工程学报, 2022, 44(8): 1512-1520. doi: 10.11779/CJGE202208016

    WANG Gang, XIAO Zhiyong, WANG Changsheng, et al. Gas transport in coal seams based on non-equilibrium state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1512-1520. (in Chinese) doi: 10.11779/CJGE202208016
    [17]
    PENG Y, LIU J S, WEI M Y, et al. Why coal permeability changes under free swellings: New insights[J]. International Journal of Coal Geology, 2014, 133: 35-46. doi: 10.1016/j.coal.2014.08.011
    [18]
    WEI M Y, LIU J S, SHI R, et al. Long-term evolution of coal permeability under effective stresses gap between matrix and fracture during CO2 injection[J]. Transport in Porous Media, 2019, 130(3): 969-983. doi: 10.1007/s11242-019-01350-7
    [19]
    WEI M Y, LIU J S, ELSWORTH D, et al. Influence of gas adsorption induced non-uniform deformation on the evolution of coal permeability[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 71-78. doi: 10.1016/j.ijrmms.2018.12.021
    [20]
    WEI M Y, LIU J S, ELSWORTH D, et al. Impact of equilibration time lag between matrix and fractures on the evolution of coal permeability[J]. Fuel, 2021, 290: 120029. doi: 10.1016/j.fuel.2020.120029
    [21]
    ZENG J, LIU J S, LI W, et al. Evolution of shale permeability under the influence of gas diffusion from the fracture wall into the matrix[J]. Energy & Fuels, 2020, 34(4): 4393-4406.
    [22]
    ZENG J, LIU J S, LI W, et al. A process-based coal swelling model: Bridging the gaps between localized swelling and bulk swelling[J]. Fuel, 2021, 293: 120360. doi: 10.1016/j.fuel.2021.120360
    [23]
    HUANG Y F, LIU J S, ELSWORTH D, et al. A transient dual porosity/permeability model for coal multiphysics[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(2): 40. doi: 10.1007/s40948-022-00348-8
    [24]
    LIU X X, CHEN L, SHENG J C, et al. A Non-Equilibrium multiphysics model for coal seam gas extraction[J]. Fuel, 2023, 331: 125942. doi: 10.1016/j.fuel.2022.125942
    [25]
    ZHANG S W, LIU J S, WEI M Y, et al. Coal permeability maps under the influence of multiple coupled processes[J]. International Journal of Coal Geology, 2018, 187: 71-82. doi: 10.1016/j.coal.2018.01.005
    [26]
    张宏学, 刘卫群. 非平衡解吸状态下页岩气储层渗透率演化机制[J]. 岩土力学, 2021, 42(10): 2696-2704.

    ZHANG Hongxue, LIU Weiqun. Permeability evolution mechanism of shale gas reservoir in non-equilibrium desorption state[J]. Rock and Soil Mechanics, 2021, 42(10): 2696-2704. (in Chinese)
    [27]
    GAO Q, LIU J S, HUANG Y F, et al. A critical review of coal permeability models[J]. Fuel, 2022, 326: 125124. doi: 10.1016/j.fuel.2022.125124
    [28]
    DETOURNAY E, CHENG A H D. Fundamentals of poroelasticity[M]//Analysis and Design Methods. Amsterdam: Elsevier, 1993: 113-171.
    [29]
    JIANG C Z, ZHAO Z F, ZHANG X W, et al. Controlling effects of differential swelling index on evolution of coal permeability[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 461-472. doi: 10.1016/j.jrmge.2020.02.001
    [30]
    吴宇. 煤层中封存二氧化碳的双重孔隙力学效应研究[D]. 徐州: 中国矿业大学, 2010.

    WU Yu. Study on Double Pore Mechanical Effect of Carbon Dioxide Storage in Coal Seam[D]. Xuzhou: China University of Mining and Technology, 2010. (in Chinese)
    [31]
    CHEN M, HOSKING L J, SANDFORD R J, et al. Dual porosity modelling of the coupled mechanical response of coal to gas flow and adsorption[J]. International Journal of Coal Geology, 2019, 205: 115-125. doi: 10.1016/j.coal.2019.01.009
  • Cited by

    Periodical cited type(5)

    1. 刘伟. 东曲煤矿采空区矸石充填技术研究及应用. 山东煤炭科技. 2025(01): 168-172+182 .
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
    3. 张保勇,赵国建,高霞,吴强. 加卸载条件下含瓦斯水合物煤体应变及渗透率试验研究. 煤炭学报. 2024(03): 1414-1431 .
    4. 张慧梅,夏浩峻,张嘉凡,杨更社,袁超,申艳军,路亚妮. 长期浸润状态下煤岩损伤机制研究. 岩土工程学报. 2024(06): 1206-1214 . 本站查看
    5. 蒋长宝,魏文辉,刘晓冬,吴家耀. 应力—应变—渗流耦合条件下煤岩渗流特性及其可视化研究. 矿业安全与环保. 2022(05): 59-63+72 .

    Other cited types(9)

Catalog

    Article views (153) PDF downloads (16) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return