• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
Citation: KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463

A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics

More Information
  • Received Date: April 17, 2022
  • Available Online: February 19, 2023
  • The relative permeability is an essential mechanical parameter characterizing the two-phase flow of rock media, and how to obtain the relative permeability quickly and effectively has become a critical issue to be solved in the current studies. A fractal analytical model for predicting the relative permeability of two-phase flow is developed using the fractal method to equate the rock pores as the capillaries with varying sizes and establish the equilibrium equation for gas-water phase flow based on the momentum balance. Then, the influences of the pore structure of the rock media on the permeability characteristics of the two-phase flow are studied based on the pore size scale and the tortuosity characteristics of the flow path. The relative permeability curves obtained by the model are in good agreement with the relevant experimental data, which verifies the reasonableness of the model. The results show that the model has better accuracy than other relative permeability models. The permeability characteristics of the rock media are related to fluid properties and pore structure. The smaller the fractal dimension Df and the tortuous fractal dimension DT, the larger the permeability of two-phase flow. In addition, increasing the value of DT decreases the relative permeability of the water phase and increases the relative permeability of the gas phase. The model does not use any empirical constants to calculate the relative permeability, which avoids tedious data processing and can be effectively used in engineering fields such as shale gas extraction.
  • [1]
    LI R, CHEN Z X, WU K L, et al. An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs[J]. Petroleum Science, 2021, 18(6): 1776-1787. doi: 10.1016/j.petsci.2021.09.005
    [2]
    李博, 王晔, 邹良超, 等. 岩石裂隙内浆液-水两相流可视化试验与驱替规律研究[J]. 岩土工程学报, 2022, 44(9): 1608-1616, 2. doi: 10.11779/CJGE202209005

    LI Bo, WANG Ye, ZOU Liangchao, et al. Displacement laws of grout-water two-phase flow in a rough-walled rock fracture through visualization tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1608-1616, 2. (in Chinese) doi: 10.11779/CJGE202209005
    [3]
    肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209-2219. doi: 10.11779/CJGE202112007

    XIAO Zhiyong, WANG Changsheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. (in Chinese) doi: 10.11779/CJGE202112007
    [4]
    ROMM E S. Fluid Flow in Fractured Rocks[M]. Moscow: Nedra Publishing House, 1966.
    [5]
    NICHOLL M J, RAJARAM H, GLASS R J. Factors controlling satiated relative permeability in a partially-saturated horizontal fracture[J]. Geophysical Research Letters, 2000, 27(3): 393-396. doi: 10.1029/1999GL006083
    [6]
    WATANABE N, SAKURAI K, ISHIBASHI T, et al. New ν-type relative permeability curves for two-phase flows through subsurface fractures[J]. Water Resources Research, 2015, 51(4): 2807-2824. doi: 10.1002/2014WR016515
    [7]
    CHEN C Y, HORNE R N, FOURAR M. Experimental study of liquid-gas flow structure effects on relative permeabilities in a fracture[J]. Water Resources Research, 2004, 40(8): w08301.
    [8]
    张鹏伟, 胡黎明, Jay N Meegoda, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37-45. doi: 10.11779/CJGE202001004

    ZHANG Pengwei, HU Liming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. (in Chinese) doi: 10.11779/CJGE202001004
    [9]
    SONG W H, YAO J, MA J S, et al. Numerical simulation of multiphase flow in nanoporous organic matter with application to coal and gas shale systems[J]. Water Resources Research, 2018, 54(2): 1077-1092. doi: 10.1002/2017WR021500
    [10]
    GHANBARIAN B, LIANG F, LIU H H. Modeling gas relative permeability in shales and tight porous rocks[J]. Fuel, 2020, 272: 117686. doi: 10.1016/j.fuel.2020.117686
    [11]
    LUO M, GLOVER P W J, ZHAO P Q, et al. 3D digital rock modeling of the fractal properties of pore structures[J]. Marine and Petroleum Geology, 2020, 122: 104706. doi: 10.1016/j.marpetgeo.2020.104706
    [12]
    赵明凯, 孔德森. 考虑裂隙面粗糙度和开度分形维数的岩石裂隙渗流特性研究[J]. 岩石力学与工程学报, 2022, 41(10): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm

    ZHAO Mingkai, KONG Desen. Study on seepage characteristics of rock fractures considering fracture surface roughness and opening fractal dimension[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1993-2002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm
    [13]
    KRUHL J H. Fractal-geometry techniques in the quantification of complex rock structures: aspecial view on scaling regimes, inhomogeneity and anisotropy[J]. Journal of Structural Geology, 2013, 46: 2-21. doi: 10.1016/j.jsg.2012.10.002
    [14]
    丁自伟, 李小菲, 唐青豹, 等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报, 2020, 39(9): 1787-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009006.htm

    DING Ziwei, LI Xiaofei, TANG Qingbao, et al. Study on correlation between fractal characteristics of pore distribution and strength of sandstone particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1787-1796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009006.htm
    [15]
    LAI F P, LI Z P, FU Y K, et al. Investigating the effects of pore-structure characteristics on porosity and absolute permeability for unconventional reservoirs[J]. Energy & Fuels, 2021, 35(1): 690-701.
    [16]
    WANG H M, WANG J G, WANG X L, et al. An improved relative permeability model for gas-water displacement in fractal porous media[J]. Water, 2019, 12(1): 27. doi: 10.3390/w12010027
    [17]
    YU B M, LI J H, LI Z H, et al. Permeabilities of unsaturated fractal porous media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642. doi: 10.1016/S0301-9322(03)00140-X
    [18]
    SU H B, ZHANG S M, SUN Y H, et al. A comprehensive model for oil-water relative permeabilities in low- permeability reservoirs by fractal theory[J]. Fractals, 2020, 28(3): 2050055. doi: 10.1142/S0218348X20500553
    [19]
    MIAO T J, CHEN A M, XU Y, et al. A permeability model for water–gas phase flow in fractal fracture networks[J]. Fractals, 2018, 26(6): 1850087.
    [20]
    CHIMA A, GEIGER S. An analytical equation to predict gas-water relative permeability curves in fractures[C]// Society of Petroleum Engineers SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, Mexico City, Mexico, 2012.
    [21]
    YU B M. Analysis of flow in fractal porous media[J]. Applied Mechanics Reviews, 2008, 61(5): 1.
    [22]
    YU B M, LI J H. A fractal model for the transverse thermal dispersion conductivity in porous media[J]. Chinese Physics Letters, 2004, 21(1): 117-120.
    [23]
    PELEG S, NAOR J, HARTLEY R, et al. Multiple resolution texture analysis and classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(4): 518-523.
    [24]
    PANIGRAHY C, SEAL A, MAHATO N K, et al. Differential box counting methods for estimating fractal dimension of gray-scale images: a survey[J]. Chaos, Solitons & Fractals, 2019, 126: 178-202.
    [25]
    SAAFAN M, GANAT T, MOHYALDINN M, et al. A fractal model for obtaining spontaneous imbibition capillary pressure curves based on 2D image analysis of low-permeability sandstone[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109747.
    [26]
    YU B M, LI J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372.
    [27]
    LI Y S, LI X F, TENG S N, et al. Improved models to predict gas–water relative permeability in fractures and porous media[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 190-201.
    [28]
    RANAIVOMANANA H, VERDIER J, SELLIER A, et al. Prediction of relative permeabilities and water vapor diffusion reduction factor for cement-based materials[J]. Cement and Concrete Research, 2013, 48: 53-63.
    [29]
    LI K, HORNE R N. Steam-water relative permeability by the capillary pressure method[C]// International Symposium of the Society of Core analysts. Society for Core Analysts, New Brunswick, Canada, 2001, 17-19.
    [30]
    DIOMAMPO G P. Relative Permeability Through Fractures [D]. Palo Alto: Stanford University, 2001.
    [31]
    BROOKS R H, COREY A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92(2): 61-88.
    [32]
    FOURAR M, BORIES S. Experimental study of air-water two-phase flow through a fracture (narrow channel)[J]. International Journal of Multiphase Flow, 1995, 21(4): 621-637.
    [33]
    WHEATCRAFT S W, TYLER S W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry[J]. Water Resources Research, 1988, 24(4): 566-578.
    [34]
    YU B M, CHENG P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993.
  • Cited by

    Periodical cited type(5)

    1. 刘伟. 东曲煤矿采空区矸石充填技术研究及应用. 山东煤炭科技. 2025(01): 168-172+182 .
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
    3. 张保勇,赵国建,高霞,吴强. 加卸载条件下含瓦斯水合物煤体应变及渗透率试验研究. 煤炭学报. 2024(03): 1414-1431 .
    4. 张慧梅,夏浩峻,张嘉凡,杨更社,袁超,申艳军,路亚妮. 长期浸润状态下煤岩损伤机制研究. 岩土工程学报. 2024(06): 1206-1214 . 本站查看
    5. 蒋长宝,魏文辉,刘晓冬,吴家耀. 应力—应变—渗流耦合条件下煤岩渗流特性及其可视化研究. 矿业安全与环保. 2022(05): 59-63+72 .

    Other cited types(9)

Catalog

    Article views (359) PDF downloads (101) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return