• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
Citation: RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015

Permeability evolution of deep coal under mining stress

More Information
  • Received Date: April 08, 2021
  • Available Online: September 22, 2022
  • In order to investigate its seepage properties, the permeability of the coal in front of deep working face under different gas pressures is tested based on the mining stress path of typical mining layouts. Subsequently, the permeability evolution is divided according to the rate and monotonicity of permeability variation. Two conceptual permeability models for the coal under different stress paths are obtained. One is about the conventional triaxial loading, and the other is about the mining stress path. Moreover, according to the permeability model for deep coal under triaxial disturbance stress and the quadratic polynomial fitting relationship, a theoretical permeability model for the deep coal in complete stress-strain process is developed. The test results show that there is no compaction stage in the stress-strain curves of the coal under typical mining stress. The increase rate of permeability at the testing points before and after the peak stress is small, but that at the peak stress point is very large. The permeability curve of the coal under the conventional triaxial loading is V-shaped. The conceptual permeability model under the conventional triaxial loading can be divided into decreasing section, slow increasing section before the peak, sharp increasing section and slow increasing section after the peak. The permeability curve of the deep coal under mining stress is inverted Z-shaped. The conceptual permeability model under the mining stress path can be divided into slow increasing section before the peak, sharp increasing section and slow increasing section after the peak. Finally, it is validated that the developed theoretical permeability model can evaluate the permeability evolution of the deep coal under different mining layouts.
  • [1]
    袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1–6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601002.htm

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1–6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201601002.htm
    [2]
    谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采: 理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391–1397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm

    XIE He-ping, ZHOU Hong-wei, XUE Dong-jie, et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society, 2014, 39(8): 1391–1397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm
    [3]
    申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(9): 1470–1476. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409022.htm

    SHEN Jian, QIN Yong, FU Xue-hai, et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience, 2014, 25(9): 1470–1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409022.htm
    [4]
    ZHOU H W, WANG L J, RONG T L, et al. Creep-based permeability evolution in deep coal under unloading confining pressure[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 185–196. doi: 10.1016/j.jngse.2019.03.010
    [5]
    王辰霖, 张小东, 李贵中, 等. 循环加卸载作用下不同高度煤样渗透性试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2299–2308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810011.htm

    WANG Chen-lin, ZHANG Xiao-dong, LI Gui-zhong, et al. Experimental study on the permeability of coal samples with different heights under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2299–2308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810011.htm
    [6]
    贾恒义, 王凯, 王益博, 等. 围压循环加卸载作用下含瓦斯煤样渗透特性试验研究[J]. 煤炭学报, 2020, 45(5): 1710–1718. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005016.htm

    JIA Heng-yi, WANG Kai, WANG Yi-bo, et al. Permeability characteristics of gas-bearing coal specimens under cyclic loading-unloading of confining pressure[J]. Journal of China Coal Society, 2020, 45(5): 1710–1718. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005016.htm
    [7]
    刘超, 黄滚, 赵宏刚, 等. 复杂应力路径下原煤力学与渗透特性试验[J]. 岩土力学, 2018, 39(1): 191–198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801024.htm

    LIU Chao, HUANG Gun, ZHAO Hong-gang, et al. Tests on mechanical and permeability characteristics of raw coal under complex stress paths[J]. Rock and Soil Mechanics, 2018, 39(1): 191–198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801024.htm
    [8]
    谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067–1074. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067–1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm
    [9]
    于文静. 典型开采条件下含瓦斯煤体渗透特性研究[D]. 北京: 中国矿业大学(北京), 2012.

    YU Wen-jing. Study on Permeability Characteristics of Coal Under Three Typical Mining Conditions[D]. Beijing: China University of mining and Technology(Beijing), 2012. (in Chinese)
    [10]
    许江, 李波波, 周婷, 等. 加卸载条件下煤岩变形特性与渗透特征的试验研究[J]. 煤炭学报, 2012, 37(9): 1493–1498. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209016.htm

    XU Jiang, LI Bo-bo, ZHOU Ting, et al. Experimental study of coal deformation and permeability characteristics under loading-unloading conditions[J]. Journal of China Coal Society, 2012, 37(9): 1493–1498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201209016.htm
    [11]
    李文璞. 采动影响下煤岩力学特性及瓦斯运移规律研究[D]. 重庆: 重庆大学, 2014.

    LI Wen-pu. Research on Mechanical Characteristics and Gas Migration Law of Coal Influenced by Mining[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [12]
    赵宏刚, 张东明, 刘超, 等. 加卸载下原煤力学特性及渗透演化规律[J]. 工程科学学报, 2016, 38(12): 1674–1680. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612003.htm

    ZHAO Hong-gang, ZHANG Dong-ming, LIU Chao, et al. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions[J]. Chinese Journal of Engineering, 2016, 38(12): 1674–1680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201612003.htm
    [13]
    蒋长宝, 段敏克, 尹光志, 等. 不同含水状态下含瓦斯原煤加卸载试验研究[J]. 煤炭学报, 2016, 41(9): 2230–2237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609012.htm

    JIANG Chang-bao, DUAN Min-ke, YIN Guang-zhi, et al. Loading-unloading experiments of coal containing gas under the condition of different moisture contents[J]. Journal of China Coal Society, 2016, 41(9): 2230–2237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609012.htm
    [14]
    ZHANG Z T, ZHANG R, XIE H P, et al. An anisotropic coal permeability model that considers mining-induced stress evolution, microfracture propagation and gas sorption-desorption effects[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 664–679. doi: 10.1016/j.jngse.2017.08.028
    [15]
    JU Y, ZHANG Q G, ZHENG J T, et al. Experimental study on CH4 permeability and its dependence on interior fracture networks of fractured coal under different excavation stress paths[J]. Fuel, 2017, 202: 483–493. doi: 10.1016/j.fuel.2017.04.056
    [16]
    薛熠. 采动影响下损伤破裂煤岩体渗透性演化规律研究[D]. 徐州: 中国矿业大学, 2017.

    XUE Yi. Study on the Permeability Evolution of Fractured Coal under the Influence of Mining[D]. Xuzhou: China University of Mining and Technology, 2017. (in Chinese)
    [17]
    XIE J, GAO M Z, ZHANG R, et al. Gas flow characteristics of coal samples with different levels of fracture network complexity under triaxial loading and unloading conditions[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107606. doi: 10.1016/j.petrol.2020.107606
    [18]
    PAN Z J, CONNELL L D. Modelling permeability for coal reservoirs: a review of analytical models and testing data[J]. International Journal of Coal Geology, 2012, 92: 1-44. doi: 10.1016/j.coal.2011.12.009
    [19]
    XUE S, ZHENG C S, KIZIL M, et al. Coal permeability models for enhancing performance of clean gas drainage: a review[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108283. doi: 10.1016/j.petrol.2020.108283
    [20]
    肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112007.htm

    XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112007.htm
    [21]
    ZHOU H W, ZHAO J W, SU T, et al. Characterization of gas flow in backfill mining-induced coal seam using a fractional derivative-based permeability model[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104571. doi: 10.1016/j.ijrmms.2020.104571
    [22]
    XUE Y, GAO F, GAO Y N, et al. Quantitative evaluation of stress-relief and permeability-increasing effects of overlying coal seams for coal mine methane drainage in Wulan coal mine[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 122–137. doi: 10.1016/j.jngse.2016.04.029
    [23]
    LI J H, LI B B, CHENG Q Y, et al. Characterization of anisotropic coal permeability with the effect of sorption-induced deformation and stress[J]. Fuel, 2022, 309: 122089. doi: 10.1016/j.fuel.2021.122089
    [24]
    周宏伟, 荣腾龙, 牟瑞勇, 等. 采动应力下煤体渗透率模型构建及研究进展[J]. 煤炭学报, 2019, 44(1): 221–235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901022.htm

    ZHOU Hong-wei, RONG Teng-long, MOU Rui-yong, et al. Development in modeling approaches to mining-induced permeability of coals[J]. Journal of China Coal Society, 2019, 44(1): 221–235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901022.htm
    [25]
    荣腾龙, 周宏伟, 王路军, 等. 三向应力条件下煤体渗透率演化模型研究[J]. 煤炭学报, 2018, 43(7): 1930–1937. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm

    RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. Coal permeability model for gas movement under the three-dimensional stress[J]. Journal of China Coal Society, 2018, 43(7): 1930–1937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm
    [26]
    王广荣, 薛东杰, 郜海莲, 等. 煤岩全应力-应变过程中渗透特性的研究[J]. 煤炭学报, 2012, 37(1): 107–112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201026.htm

    WANG Guang-rong, XUE Dong-jie, GAO Hai-lian, et al. Study on permeability characteristics of coal rock in complete stress-strain process[J]. Journal of China Coal Society, 2012, 37(1): 107–112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201201026.htm
    [27]
    魏建平, 王登科, 位乐. 两种典型受载含瓦斯煤样渗透特性的对比[J]. 煤炭学报, 2013, 38(增刊1): 93–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm

    WEI Jian-ping, WANG Deng-ke, WEI Le. Comparison of permeability between two kinds of loaded coal containing gas samples[J]. Journal of China Coal Society, 2013, 38(S1): 93–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S1016.htm
    [28]
    ZHENG C S, KIZIL M S, AMINOSSADATI S M, et al. Effects of geomechanical properties of interburden on the damage-based permeability variation in the underlying coal seam[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 42–51. doi: 10.1016/j.jngse.2018.04.017
    [29]
    薛熠, 高峰, 高亚楠, 等. 采动影响下损伤煤岩体峰后渗透率演化模型研究[J]. 中国矿业大学学报, 2017, 46(3): 521–527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703011.htm

    XUE Yi, GAO Feng, GAO Ya-nan, et al. Research on mining-induced permeability evolution model of damaged coal in post-peak stage[J]. Journal of China University of Mining & Technology, 2017, 46(3): 521–527. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201703011.htm
    [30]
    荣腾龙, 周宏伟, 王路军, 等. 开采扰动下考虑损伤破裂的深部煤体渗透率模型研究[J]. 岩土力学, 2018, 39(11): 3983–3992. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811010.htm

    RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. A damage-based permeability models of deep coal under mining disturbance[J]. Rock and Soil Mechanics, 2018, 39(11): 3983–3992. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811010.htm
    [31]
    尹光志, 黄启翔, 张东明, 等. 地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 336–343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002017.htm

    YIN Guang-zhi, HUANG Qi-xiang, ZHANG Dong-ming, et al. Test study of gas seepage characteristics of gas-bearing coal specimen during process of deformation and failure in geostress field[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 336–343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201002017.htm
    [32]
    齐消寒. 近距离低渗煤层群多重采动影响下煤岩破断与瓦斯流动规律及抽采研究[D]. 重庆: 重庆大学, 2016.

    QI Xiao-han. Research on the Coal Rock Failure and Methane Flow Laws of Short-Distance and Low Permeability Coal Seams Group under the Effect of Repeated Excavation[D]. Chongqing: Chongqing University, 2016. (in Chinese)
    [33]
    白鑫. 液态二氧化碳相变射孔致裂煤岩体增透机理及应用研究[D]. 重庆: 重庆大学, 2019.

    BAI Xin. Research on Mechanism and Application of Liquid Carbon Dioxide Phase Change Jet Fracturing Coal Seam to Increase Gas Permeability[D]. Chongqing: Chongqing University, 2019. (in Chinese)
  • Cited by

    Periodical cited type(5)

    1. 刘伟. 东曲煤矿采空区矸石充填技术研究及应用. 山东煤炭科技. 2025(01): 168-172+182 .
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
    3. 张保勇,赵国建,高霞,吴强. 加卸载条件下含瓦斯水合物煤体应变及渗透率试验研究. 煤炭学报. 2024(03): 1414-1431 .
    4. 张慧梅,夏浩峻,张嘉凡,杨更社,袁超,申艳军,路亚妮. 长期浸润状态下煤岩损伤机制研究. 岩土工程学报. 2024(06): 1206-1214 . 本站查看
    5. 蒋长宝,魏文辉,刘晓冬,吴家耀. 应力—应变—渗流耦合条件下煤岩渗流特性及其可视化研究. 矿业安全与环保. 2022(05): 59-63+72 .

    Other cited types(9)

Catalog

    Article views (206) PDF downloads (116) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return