• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015
Citation: CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015

Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions

More Information
  • Received Date: August 11, 2021
  • Available Online: December 11, 2022
  • The evolution of dynamic permeability is an important basis for improving the production of coal bed methane. In order to obtain the influences of the softening behavior of coal from matrix-fracture pressure interactions on the evolution of its permeability, a dual-pore permeability model with modulus reduction ratio from differential pressure is obtained through theoretical analysis and is validated based on the permeability transient method tests and the finite element numerical simulation software COMSOL. The experimental results show that the strain is divided into the initial, rapid growth and equilibrium phases based on the characteristics of the curve change. During the rapid growth phase, the slope of the strain curve increases from 1 to 3 MPa with slopes of 83.77, 270.54, 440.92 m/s respectively. The modulus-softening coefficient is a function of the strain and its value increases. Furthermore, a dual-pore permeability model with modulus-softening coefficient is obtained by proposing a conceptual model for open and closed fractures. The experimental data are consistent with the results of the improved permeability model, demonstrating that the modulus-softening coefficient dominates the dynamic evolution of the permeability. Finally, the numerical simulation method can be used to monitor the pressure in the coal matrix compared to the experimental method. Thus, the pressure difference between the matrix and the fracture reveals the mechanism of permeability evolution in coal samples.
  • [1]
    WANG C G, ZHANG J D, CHEN J G, et al. Understanding competing effect between sorption swelling and mechanical compression on coal matrix deformation and its permeability[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138(6): 104639–104651.
    [2]
    陈月霞, 许江, 褚廷湘, 等. 相似煤储层瓦斯压力计算模型及其空间分布特征[J]. 中国矿业大学学报, 2021, 50(3): 606–612. doi: 10.13247/j.cnki.jcumt.001292

    CHEN Yue-xia, XU Jiang, CHU Ting-xiang, et al. Calculation model of gas pressure in similar coal reservoir and its spatial distribution characteristics[J]. Journal of China University of Mining & Technology, 2021, 50(3): 606–612. (in Chinese) doi: 10.13247/j.cnki.jcumt.001292
    [3]
    秘昭旭, 王福刚, 石娜, 等. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17356.shtml

    MI Zhao-xu, WANG Fu-gang, SHI Na, et al. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864–871. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17356.shtml
    [4]
    LIU J S, CHEN Z W, ELSWORTH D, et al. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology, 2010, 83(1): 21–30. doi: 10.1016/j.coal.2010.04.006
    [5]
    肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml

    XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml
    [6]
    ANGGARA F, SASAKI K, SUGAI Y. The correlation between coal swelling and permeability during CO2 sequestration: a case study using Kushiro low rank coals[J]. International Journal of Coal Geology, 2016, 166(9): 62–70.
    [7]
    BOTTOMLEY W, FURNISS J P, RAZA S S, et al. Characterising the dependence of coal permeability to methane adsorption, pore pressure and stress: laboratory testing of Walloon coals from the surat basin[C]// SPE/IATMA Asia Pacific Oil and Gas Conference. Jakarta, 2017: 18675–18687.
    [8]
    BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research Atmospheres, 1968, 73(6): 2225–2236. doi: 10.1029/JB073i006p02225
    [9]
    KUMAR H, ELSWORTH D, LIU J S, et al. Optimizing enhanced coalbed methane recovery for unhindered production and CO2 injectivity[J]. International Journal of Greenhouse Gas Control, 2012, 11(11): 86–97.
    [10]
    KUMAR H, ELSWORTH D, LIU J S, et al. Permeability evolution of propped artificial fractures in coal on injection of CO2[J]. Journal of Petroleum Science and Engineering, 2015, 133(9): 695–704.
    [11]
    FENG R M, HARPALANI S, PANDEY R. Evaluation of various pulse-decay laboratory permeability measurement techniques for highly stressed coals[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 297–308. doi: 10.1007/s00603-016-1109-7
    [12]
    VIETE D R, RANJITH P G. The effect of CO2 on the geomechanical and permeability behaviour of brown coal: implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology, 2006, 66(3): 204–216. doi: 10.1016/j.coal.2005.09.002
    [13]
    LARSEN J W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology, 2004, 57(1): 63–70. doi: 10.1016/j.coal.2003.08.001
    [14]
    SALARI M R, SAEB S, WILLAM K J, et al. A coupled elastoplastic damage model for geomaterials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(27/28/29): 2625–2643.
    [15]
    HU S B, WANG E Y, KONG X G. Damage and deformation control equation for gas-bearing coal and its numerical calculation method[J]. Journal of Natural Gas Science and Engineering, 2015, 25(7): 166–179.
    [16]
    WANG E Y, KONG X G, HU S B, et al. Multi-scale fractured coal gas–solid coupling model and its applications in engineering projects[J]. Transport in Porous Media, 2018, 121(3): 703–724. doi: 10.1007/s11242-017-0981-2
    [17]
    CHEN D, PAN Z J, SHI J Q, et al. A novel approach for modelling coal permeability during transition from elastic to post-failure state using a modified logistic growth function[J]. International Journal of Coal Geology, 2016, 163(6): 132–139.
    [18]
    CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
    [19]
    ZHANG X M, ZHANG D M, LEO C J, et al. Damage evolution and post-peak gas permeability of raw coal under loading and unloading conditions[J]. Transport in Porous Media, 2017, 117(3): 465–480. doi: 10.1007/s11242-017-0842-z
    [20]
    ZHU W C, WEI C H, LI S, et al. Numerical modeling on destress blasting in coal seam for enhancing gas drainage[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59(4): 179–190.
    [21]
    ZHENG C S, KIZIL M, CHEN Z W, et al. Effects of coal damage on permeability and gas drainage performance[J]. International Journal of Mining Science and Technology, 2017, 27(5): 783–786. doi: 10.1016/j.ijmst.2017.07.009
    [22]
    WANG L S, CHEN Z W, WANG C G, et al. Reassessment of coal permeability evolution using steady-state flow methods: the role of flow regime transition[J]. International Journal of Coal Geology, 2019, 211(7): 103210–103223.
    [23]
    WANG C G, ZANG Y X, WANG L S, et al. Interaction of cleat-matrix on coal permeability from experimental observations and numerical analysis[J]. Geofluids, 2019, 19(11): 1–15.
    [24]
    刘江峰, 倪宏阳, 浦海, 等. 多孔介质气体渗透率测试理论、方法、装置及应用[J]. 岩石力学与工程学报, 2021, 40(1): 137–146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101013.htm

    LIU Jiang-feng, NI Hong-yang, PU Hai, et al. Test theory, method and device of gas permeability of porous media and the application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 137–146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101013.htm
    [25]
    CHEN Z W, PAN Z J, LIU J S, et al. Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: experimental observations[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1284–1293.
    [26]
    XIE H C, NI G H, LI S, et al. The influence of surfactant on pore fractal characteristics of composite acidized coal[J]. Fuel, 2019, 253(10): 741–753.
    [27]
    JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of Rock Mechanics[M]. Oxford: Wiley-Blackwell Publishing, 2007: 312–465.
    [28]
    LIU J S, WANG J G, CHEN Z W, et al. Impact of transition from local swelling to macro swelling on the evolution of coal permeability[J]. International Journal of Coal Geology, 2011, 88(1): 31–40.
    [29]
    ZHANG H B, LIU J S, ELSWORTH D. How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1226–1236.
    [30]
    RANJBAR E, HASSANZADEH H. Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media[J]. Advances in Water Resources, 2011, 34(5): 627–639.
  • Related Articles

    [1]XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012
    [2]ZHAO Mi, HUANG Yi-ming, WANG Pi-guang, XU Hai-bin, DU Xiu-li. Analytical solution for water-pile-soil interaction under horizontal dynamic loads on pile head[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 907-915. DOI: 10.11779/CJGE202205014
    [3]XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
    [4]ZHOU Yong, ZHU Ya-wei. Pile-soil interaction considering thickness of contact surface[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 247-251. DOI: 10.11779/CJGE2018S1040
    [5]ZHANG Ai-jun, MO Hai-hong, ZHU Zhen-de, ZHANG Kun-yong. Analytical solution to interaction between passive piles and soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 120-127.
    [6]WU Hong-gang, MA Hui-min, ZHANG Hong-li. Evaluation of subgrade stability of mountainous highway exhibition based on interaction matrix[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 202-206.
    [7]Analytical solution to interaction between pipelines and soils under arbitrary loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [8]JIANG Jie, HUANG Maosong, LIANG Fayun, GU Qianyan. Analysis of interaction mechanism of piled raft foundation by use of simplified nonlinear model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 112-117.
    [9]ZHENG Gang, GAO Xifeng, REN Yanhua, WU Yonghong. A study on the interaction of cap(foundation),pile and soil[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 307-312.
    [10]LIAO Xionghua, ZHOU Jian, ZHANG Kexu, LI Xikui. Application of generalized freedom method to the analysis of soil-st ructure interaction problems[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 672-676.
  • Cited by

    Periodical cited type(13)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
    3. 王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 .
    4. 姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
    5. 龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
    6. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .
    7. 刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 .
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 .
    10. 荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 . 本站查看
    11. 王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 . 本站查看
    12. 林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 .
    13. 程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 . 本站查看

    Other cited types(5)

Catalog

    Article views (176) PDF downloads (22) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return