Citation: | WANG Gang, XIAO Zhi-yong, WANG Chang-sheng, JIANG Yu-jing, YU Jun-hong. Gas transport in coal seams based on non-equilibrium state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1512-1520. DOI: 10.11779/CJGE202208016 |
[1] |
刘文华. 能源总量供需平稳能源结构继续优化[N]. 中国信息报, 2020-1-20.
LIU Wen-hua. Total energy supply and demand will remain stable and the energy mix will continue to improve[N]. China Information News, 2020-1-20. (in Chinese)
|
[2] |
JIANG C Z, ZHAO Z F, ZHANG X W, et al. Controlling effects of differential swelling index on evolution of coal permeability[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 461–472. doi: 10.1016/j.jrmge.2020.02.001
|
[3] |
肖智勇, 王长盛, 王刚, 等. 基质–裂隙相互作用对渗透率演化的影响: 考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12): 2209–2219. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml
XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, et al. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209–2219. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18907.shtml
|
[4] |
LIU J S, CHEN Z W, ELSWORTH D, et al. Interactions of multiple processes during CBM extraction: a critical review[J]. International Journal of Coal Geology, 2011, 87(3/4): 175–189.
|
[5] |
WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668–678. doi: 10.1016/j.ijggc.2010.02.004
|
[6] |
LIU H H, RUTQVIST J. A new coal-permeability model: internal swelling stress and fracture–matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157–171. doi: 10.1007/s11242-009-9442-x
|
[7] |
李小春, 付旭, 方志明, 等. 有效应力对煤吸附特性影响的试验研究[J]. 岩土力学, 2013, 34(5): 1247–1252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305003.htm
LI Xiao-chun, FU Xu, FANG Zhi-ming, et al. Experimental study of influence of effective stress on coal adsorption performance[J]. Rock and Soil Mechanics, 2013, 34(5): 1247–1252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305003.htm
|
[8] |
ZHOU Y B, LI Z H, YANG Y L, et al. Evolution of coal permeability with cleat deformation and variable klinkenberg effect[J]. Transport in Porous Media, 2016, 115(1): 153–167. doi: 10.1007/s11242-016-0759-y
|
[9] |
LIU T, LIN B Q, YANG W. Impact of matrix-fracture interactions on coal permeability: model development and analysis[J]. Fuel, 2017, 207: 522–532. doi: 10.1016/j.fuel.2017.06.125
|
[10] |
WANG L S, CHEN Z W, WANG C G, et al. Reassessment of coal permeability evolution using steady-state flow methods: the role of flow regime transition[J]. International Journal of Coal Geology, 2019, 211: 103210. doi: 10.1016/j.coal.2019.103210
|
[11] |
ZHI S, ELSWORTH D. The role of gas desorption on gas outbursts in underground mining of coal[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(3): 151–171. doi: 10.1007/s40948-016-0026-2
|
[12] |
ZHANG H B, LIU J S, ELSWORTH D. How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1226–1236. doi: 10.1016/j.ijrmms.2007.11.007
|
[13] |
SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1–16. doi: 10.1023/B:TIPM.0000018398.19928.5a
|
[14] |
LIU Q Q, CHENG Y P, ZHOU H X, et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and klinkenberg effects[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1163–1180. doi: 10.1007/s00603-014-0594-9
|
[15] |
PENG Y, LIU J S, WEI M Y, et al. Why coal permeability changes under free swellings: new insights[J]. International Journal of Coal Geology, 2014, 133: 35–46. doi: 10.1016/j.coal.2014.08.011
|
[16] |
张宏学. 页岩储层渗流–应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015.
ZHANG Hong-xue. Seepage and Stress Coupling Model for Shale Reservoir and Its Application[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
|
[17] |
GRAY I. Reservoir engineering in coal seams: part 1—the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(1): 28–34. doi: 10.2118/12514-PA
|
[18] |
PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539–544.
|
[19] |
CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181–1202. doi: 10.1306/05110504114
|
[20] |
SHI J Q, DURUCAN S. Exponential growth in San Juan Basin fruitland coalbed permeability with reservoir drawdown: model match and new insights[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(6): 914–925.
|
[21] |
WU Y, LIU J S, ELSWORTH D, et al. Evolution of coal permeability: contribution of heterogeneous swelling processes[J]. International Journal of Coal Geology, 2011, 88(2/3): 152-162.
|
[22] |
ROBERTSON E P. Modeling permeability in coal using sorption-induced strain data[C]// SPE Annual Tethnical Conference and Exhibition. Dallas, 2005.
|
[23] |
PALMER I. Permeability changes in coal: analytical modeling[J]. International Journal of Coal Geology, 2009, 77(1/2): 119–126.
|
[24] |
WU Y, LIU J S, ELSWORTH D, et al. Development of anisotropic permeability during coalbed methane production[J]. Journal of Natural Gas Science and Engineering, 2010, 2(4): 197–210. doi: 10.1016/j.jngse.2010.06.002
|
1. |
肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 .
![]() | |
2. |
杨希培,邢玉强. 采动应力作用下煤岩渗流场演化规律数值模拟. 煤矿安全. 2024(04): 33-41 .
![]() | |
3. |
王伟,余金昊,方志明,李小春,李琦,陈向军,王亮. 基于体积应变的煤体渗透率模型及影响参数分析. 煤炭学报. 2024(06): 2741-2756 .
![]() | |
4. |
姬红英,王文博,辛亚军,张东营,高忠国,任金武. 水力耦合下煤样声发射分形-渗透率模型及试验研究. 煤炭学报. 2024(08): 3381-3398 .
![]() | |
5. |
龙航,林海飞,马东民,李树刚,季鹏飞,白杨. 基于弹-塑性变形的含瓦斯煤体渗透率动态演化模型. 煤炭学报. 2024(09): 3859-3871 .
![]() | |
6. |
王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .
![]() | |
7. |
刘辉辉,于斌,林柏泉,夏彬伟,李全贵,邹全乐. 原位煤层抽采多重应力演化规律及对渗透率控制机制. 岩石力学与工程学报. 2023(04): 906-917 .
![]() | |
8. |
孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 .
![]() | |
9. |
亓宪寅,王胜伟,耿殿栋,付鹏. 基于等效裂隙开度的层理煤岩渗透率模型研究. 煤矿安全. 2023(08): 1-11 .
![]() | |
10. |
荣腾龙,刘克柳,周宏伟,关灿,陈岩,任伟光. 采动应力下深部煤体渗透率演化规律研究. 岩土工程学报. 2022(06): 1106-1114 .
![]() | |
11. |
王刚,肖智勇,王长盛,蒋宇静,于俊红. 基于非平衡状态的煤层中气体运移规律研究. 岩土工程学报. 2022(08): 1512-1520 .
![]() | |
12. |
林海飞,龙航,李树刚,赵鹏翔,严敏,白杨,肖通,秦澳立. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用. 岩石力学与工程学报. 2022(S2): 3294-3305 .
![]() | |
13. |
程先振,陈连军,栾恒杰,王春光,蒋宇静. 基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化. 岩土工程学报. 2022(10): 1890-1898 .
![]() |