Citation: | JIANG Ming-jing, SUN Ruo-han, LI Tao, YANG Tao, TAN Ya-fei-ou. CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 20-28. DOI: 10.11779/CJGE202001002 |
[1] |
沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.
SHEN Zhu-jiang. Theoretical Soil Mechanics[M]. Beijing: China Water and Power Press, 2000. (in Chinese)
|
[2] |
GAO Y F, HANG L, HE J, et al. Mechanical behaviour of biocemented sands at various treatment levels and relative densities[J]. Acta Geotechnica, 2019, 14(3): 697-707. doi: 10.1007/s11440-018-0729-3
|
[3] |
WANG Y, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique, 2019, 69(12): 1-9.
|
[4] |
INAGAKI Y, TSUKAMOTO M, MORI H, et al. A centrifugal model test of microbial carbonate precipitation as liquefaction countermeasure[J]. Japanese Geotechnical Journal, 2011, 6(2): 157-167. doi: 10.3208/jgs.6.157
|
[5] |
HAN Z G, CHENG X H, MA Q. An experimental study on dynamic response for MICP strengthening liquefiable sands[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(4): 673-679. doi: 10.1007/s11803-016-0357-6
|
[6] |
刘汉龙, 肖鹏, 肖扬, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
|
[7] |
REBATA-LANDA V, SANTAMARINA J C. Mechanical effects of biogenic nitrogen gas bubbles in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(2): 128-137. doi: 10.1061/(ASCE)GT.1943-5606.0000571
|
[8] |
HE J. Mitigation of liquefaction of sand using microbial methods[D]. Singapore: Nanyang Technological University, 2013.
|
[9] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[10] |
KHOUBANI A, EVANS T M, MONTOYA B M. Particulate simulations of triaxial tests on bio-cemented sand using a new cementation model[C]//Proceedings of GeoChicago: Sustainability, Energy, and the Geoenvironment. Chicago, 2016: 1-10.
|
[11] |
FENG K, MONTOYA B M, EVANS T M. Discrete element method simulations of bio-cemented sands[J]. Computers and Geotechnics, 2017, 85: 139-150. doi: 10.1016/j.compgeo.2016.12.028
|
[12] |
ANDERSON J D, WENDT J. Computational Fluid Dynamics[M]. New York: McGraw-Hill, 1995.
|
[13] |
CHANG C Y, SCHMIDT J, DÖRENKÄMPER M, et al. A consistent steady state CFD simulation method for stratified atmospheric boundary layer flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 55-67. doi: 10.1016/j.jweia.2017.10.003
|
[14] |
PAREKH J, RZEHAK R. Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2018, 99: 231-245. doi: 10.1016/j.ijmultiphaseflow.2017.10.012
|
[15] |
EL SHAMY U, ZEGHAL M. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(8): 712-729. doi: 10.1016/j.soildyn.2006.12.010
|
[16] |
蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
|
[17] |
蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[18] |
JIANG M J, SHEN Z F, WANG J F. A novel three- dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
|
[19] |
金树楼. 结构性砂土三维微观接触力学试验及离散元数值模拟[D]. 上海: 同济大学, 2016.
JIN Shu-lou. Three Dimensional Experimental and Numerical Study on Micro- and Macro-mechanical Behaviors of Structural Sands[D]. Shanghai: Tongji University, 2016. (in Chinese)
|
[20] |
THORNTON C, CUMMINS S J, CLEARY P W. An investigation of the comparative behavior of alternative contact force models during inelastic collisions[J]. Powder Technology, 2013, 233(3): 30-46.
|
[21] |
SHEN Z F, JIANG M J, THORNTON C. DEM simulation of bonded granular material: Part I contact model and application to cemented sand[J]. Computers & Geotechnics 2016, 75: 192-209.
|
[22] |
谭亚飞鸥. 考虑循环荷载的三维微观胶结模型及微生物处理砂土循环三轴CFD-DEM耦合模拟[D]. 上海: 上海理工大学, 2018.
TAN Ya-fei-ou. A Novel Three-dimensional Bonded Contact Model Incorporating the Effect of Cyclic Loads and CFD-DEM Simulation of Microbially Treated Sands Under Undrained Consolidated Cyclic Triaxial Tests[D]. Shanghai: University of Shanghai for Science and Technology, 2018. (in Chinese)
|
[23] |
ZHANG A, JIANG M J. Numerical simulation of undrained triaxial tests for granular soil using a coupled CFD-DEM method with moving mesh[J]. Acta Geotechnica, 2019. (to be submitted)
|
[24] |
ZHAO T. Investigation of Landslide-induced Debris Flows by the DEM and CFD[D]. Oxford: University of Oxford, 2014.
|
[25] |
VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175.
|
[26] |
AL QABANY A, SOGA K, SANTAMARINA C, et al. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 992-1001.
|
[27] |
SCHUURMAN I E. The compressibility of an air/water mixture and a theoretical relation between the air and water pressures[J]. Géotechnique, 1966, 16(4): 269-281.
|
[28] |
刘侃, 朱小军, 张帆舸, 等. 含气泡土的孔隙流体压缩系数计算分析[J]. 岩土工程学报, 2017, 39(增刊2): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2031.htm
LIU Kan, ZHU Xiao-jun, ZHANG Fan-ge, et al. Calculation of coefficient of compressibility for air-water mixture in gassy soils[J]. Chinese Journal of Geotechnical Engineering,2017, 39(S2): 120-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2031.htm
|
[29] |
DORSEY N E. Properties of Ordinary Water-Substance[M]. New York: Reinhold Publishing Corporation, 1940.
|
[30] |
FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057.
|
[31] |
JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(5): 579-597.
|
[32] |
KUHN M R, RENKEN H E, MIXSELL A D, et al. Investigation of cyclic liquefaction with discrete element simulations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014075.
|