• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHEN Zhi-fu, GAO Feng, JIANG Ming-jing, WANG Zhi-hua, LIU Lu, GAO Hong-mei. An easy method to calculate van der Waals interaction between clay plate and spherical particle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 776-782. DOI: 10.11779/CJGE202104021
Citation: SHEN Zhi-fu, GAO Feng, JIANG Ming-jing, WANG Zhi-hua, LIU Lu, GAO Hong-mei. An easy method to calculate van der Waals interaction between clay plate and spherical particle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 776-782. DOI: 10.11779/CJGE202104021

An easy method to calculate van der Waals interaction between clay plate and spherical particle

More Information
  • Received Date: April 12, 2020
  • Available Online: December 04, 2022
  • The interaction between clay plate and non-plastic silty particle is one of the key factors determining the mechanical behavior of silty clay and clayey silt, which form a major category of soil in geotechnical engineering. The van der Waals force is the most important interaction between clay plate and non-plastic silty particle, which is also the origin of true cohesion in saturated clay. However, it is extremely difficult to obtain the analytical solution for this force to be applied in micro-macro cross-scale correlation and discrete element method simulation of soil. An easy method is proposed in this study for this purpose. The basic idea is to view the non-plastic silty particle as the spherical particle and to divide the cubic clay plate into basic cubes. Then, the problem is simplified to obtain the van der Waals interaction between the basic cube and the spherical particle, which can be solved in the following way. First, the Monte Carlo simulation is used to collect the data of van der Waals interaction of the basic cube and the sphere with a wide range of relative position. Then, an artificial neuro network was trained to fit the function between the van der Waals force and the relative position of the two objects with high accuracy. Finally, the total force and torque applied on the clay plate are summed up over all the basic cubes constituting the clay plate. It is found that the proposed easy method has strength in both accuracy and efficiency. The model-fitting parameters can be used to calculate the van der Waals interaction between the clay plate and the spherical particle with a diameter greater than 1 m.
  • [1]
    陈芳, 周洋, 苏新, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105017.htm

    CHEN Fang, ZHOU Yang, SU Xin, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 95-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105017.htm
    [2]
    蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG M J. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 104-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [3]
    JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116. doi: 10.1016/j.compgeo.2013.07.006
    [4]
    YAO M, ANANDARAJAH A. Three-Dimensional discrete element method of analysis of clays[J]. Journal of Engineering Mechanics, 2003, 129(6): 585-596. doi: 10.1061/(ASCE)0733-9399(2003)129:6(585)
    [5]
    LONDON F. On the theory and systematics of molecular forces[J]. Journal of Physics, 1930, 63(3/4): 245-279. (in German)
    [6]
    CASIMIR H B G, POLDER D. The influence of retardation on the London-van der Waals forces[J]. Physical Review, 1948, 73(4): 360-372. doi: 10.1103/PhysRev.73.360
    [7]
    LIFSHITZ E M. The theory of molecular attractive forces between solids[J]. Soviet Physics, 1956, 2(1): 73-83.
    [8]
    ANANDARAJAH A, CHEN J. Single correction function for computing retarded van der Waals attraction[J]. Journal of Colloid and Interface Science, 1995, 176(2): 293-300. doi: 10.1006/jcis.1995.9964
    [9]
    HAMAKER H C. The London-van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072. doi: 10.1016/S0031-8914(37)80203-7
    [10]
    De BOER J H. The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins[J]. Transactions of the Faraday Society, 1936, 32: 10-37. doi: 10.1039/tf9363200010
    [11]
    ANANDARAJAH A, CHEN J. Van der Waals attractive force between clay particles in water and contaminants[J]. Soils and Foundations, 1997, 37(2): 27-37. doi: 10.3208/sandf.37.2_27
  • Related Articles

    [1]WANG Cai-jin, ZHANG Tao, LUO Jun-hui, MA Chong, DUAN Long-chen. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109-112. DOI: 10.11779/CJGE2019S2028
    [2]GAO Jie, ZHU Shi-min, CHEN Chang-fu. RBF neural network based creep model of red clay-anchor interface[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 122-126. DOI: 10.11779/CJGE2018S2025
    [3]LI Duanyou, GAN Xiaoqing, ZHOU Wu. Back analysis on mechanical parameters of dams based on uniform design and genetic neural network[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 125-130.
    [4]GUO Wenbing, DENG Kazhong, ZOU Youfeng. Study on artificial neural network method for calculation of subsidence coefficient[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 212-215.
    [5]ZHOU Jianping, YAN Shuwang. Artificial neural networksbased-model for forecasting critical height of GRW[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 782-786.
    [6]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [7]WANG Shuhong, HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 572-575.
    [8]CHEN Changyan, WANG Sijing, SHEN Xiaoke. Predicting models to estimate stability of rock slope based on artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 157-161.
    [9]Chen Zhengzhou, Hu Fusheng, Fang Lei, Salah Bishir. Technique for simulating joint network of rock masses[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 22-25.
    [10]Cai Yudong, Gong Jiawen, Yao Linsheng. Artificial Neural Network Model for Prediction of Liquefaction of Sandy Soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(6): 53-58.
  • Cited by

    Periodical cited type(6)

    1. 梁旭之,郑世伦,刘斌,王云进,肖平. 矿区道路排水设施设计研究. 能源与环保. 2022(06): 279-284 .
    2. 唐辉明. 重大滑坡预测预报研究进展与展望. 地质科技通报. 2022(06): 1-13 .
    3. 张伏光,聂卓琛,陈孟飞,冯怀平. 不排水循环荷载条件下胶结砂土宏微观力学性质离散元模拟研究. 岩土工程学报. 2021(03): 456-464 . 本站查看
    4. 李涛,高颖,张嘉睿,李殿鑫,陈伟,张鹏,李博,梅奥然. 陕北保水采煤背景下MICP再造隔水土层的试验研究. 煤炭学报. 2021(09): 2984-2994 .
    5. 田威,李腾,贾能,张旭东,贺礼. 固化剂在黄土路基工程中的研究进展. 公路. 2021(11): 45-52 .
    6. 戴轩,霍海峰,程雪松,郭旺,冯兴. 高水压作用下水砂耦合流失的DEM-CFD分析. 工业建筑. 2020(11): 82-90 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return