• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008
Citation: WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008

Multiscale analyses of failure pattern transition in high-porosity sandstones

More Information
  • Received Date: April 28, 2020
  • Available Online: December 05, 2022
  • High-porosity sandstones are important host rocks for hydrocarbon and groundwater reservoirs. It is of significance to investigate their failure pattern transitions under different loading conditions. A hierarchical multiscale modeling approach is employed, coupling the finite element method and the discrete element method, to compare and analyze the failure pattern transition in typical geotechnical boundary value problems, e.g., (drained) biaxial compression tests, borehole stability problems, hydro-mechanical problems, etc. The failure patterns with distinct geometric features, including pure compaction band and shear-involved deformation band, are formed under different loading conditions. The transitions between different patterns, due to stress concentration, boundary conditions, pore pressure, etc., complicate the failure patterns in boundary value problems. The increase in the effective mean stress tends to transit the shear-involved band deformation to the compaction band one and the decrease tends to cause the transition from the compaction band deformation to the shear-involved band one.
  • [1]
    WONG T F, DAVID C, ZHU W. The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation[J]. Journal of Geophysical Research, 1997, 102(B2): 3009-3025. doi: 10.1029/96JB03281
    [2]
    TEMBE S, BAUD P, WONG T F. Stress conditions for the propagation of discrete compaction bands in porous sandstone[J]. Journal of Geophysical Research, 2008, 113: B09409.
    [3]
    BAUD P, KLEIN E, WONG T F. Compaction localization in porous sandstones: apatial evolution of damage and acoustic emission activity[J]. Journal of Structural Geology, 2004, 26(4): 603-624. doi: 10.1016/j.jsg.2003.09.002
    [4]
    BÉSUELLE P, DESRUES J, RAYNAUD S. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(8): 1223-1237. doi: 10.1016/S1365-1609(00)00057-5
    [5]
    DAS A, TENGATTINI A, NGUYEN G D, et al. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables Part II: validation and localization analysis[J]. Journal of the Mechanics and Physics of Solids, 2014, 70(1): 382-405.
    [6]
    AYDIN A, BORJA R I, EICHHUBL P. Geological and mathematical framework for failure modes in granular rock[J]. Journal of Structural Geology, 2006, 28(1): 83-98. doi: 10.1016/j.jsg.2005.07.008
    [7]
    ISSEN K A, RUDNICKI J W. Conditions for compaction bands in porous rock[J]. Journal of Geophysical Research, 2000, 105(B9): 21529-21536. doi: 10.1029/2000JB900185
    [8]
    MARKETOS G, BOLTON M D. Compaction bands simulated in discrete element models[J]. Journal of Structural Geology, 2009, 31(5): 479-490. doi: 10.1016/j.jsg.2009.03.002
    [9]
    DATTOLA G, DI PRISCO C, REDAELLI I, et al. A distinct element method numerical investigation of compaction processes in highly porous cemented granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(11): 1101-1130. doi: 10.1002/nag.2241
    [10]
    VARDOULAKIS I G, SULEM J, GUENOT A. Borehole instabilities as bifurcation phenomena[J]. International Journal of Rock Mechanics and Mining Sciences and, 1988, 25(3): 159-170. doi: 10.1016/0148-9062(88)92298-X
    [11]
    郤保平, 赵阳升, 张昌锁, 等. 高温高压下花岗岩中钻孔变形规律实验研究[J]. 岩土工程学报, 2010, 32(2): 253-258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002018.htm

    XI Bao-ping, ZHAO Yang-sheng, ZHANG Chang-suo, et al. Drilling deformation in granite under high temperatures and stresses[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 253-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002018.htm
    [12]
    PAPANASTASIOU P C, VARDOULAKIS I G. Numerical treatment of progressive localization in relation to borehole stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(6): 389-424. doi: 10.1002/nag.1610160602
    [13]
    PARDOEN B, LEVASSEUR S, COLLIN F. Using local second gradient model and shear strain localisation to model the excavation damaged zone in unsaturated claystone[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 691-714. doi: 10.1007/s00603-014-0580-2
    [14]
    RAHMATI H, NOURI A, CHAN D, et al. Simulation of drilling-induced compaction bands using discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(1): 37-50. doi: 10.1002/nag.2194
    [15]
    LEE H, MOON T, HAIMSON B C. Borehole breakouts induced in arkosic sandstones and a discrete element analysis[J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1369-1388. doi: 10.1007/s00603-015-0812-0
    [16]
    DUAN K, KWOK C Y. Evolution of stress-induced borehole breakout in inherently anisotropic rock: insights from discrete element modeling[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2361-2381. doi: 10.1002/2015JB012676
    [17]
    HAIMSON B C. Micromechanisms of borehole instability leading to breakouts in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 157-173. doi: 10.1016/j.ijrmms.2006.06.002
    [18]
    LEE M, HAIMSON B C. Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism[J]. International Journal of Rock Mechanics and Mining Sciences and, 1993, 30(7): 1039-1045. doi: 10.1016/0148-9062(93)90069-P
    [19]
    HAIMSON B C, LEE H. Borehole breakouts and compaction bands in two high-porosity sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 287-301. doi: 10.1016/j.ijrmms.2003.09.001
    [20]
    BAUD P, REUSCHLÉ T, JI Y, et al. Mechanical compaction and strain localization in Bleurswiller sandstone[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(9): 6501-6522. doi: 10.1002/2015JB012192
    [21]
    DRESEN G, STANCHITS S, RYBACKI E. Borehole breakout evolution through acoustic emission location analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 426-435. doi: 10.1016/j.ijrmms.2009.12.010
    [22]
    WU H, ZHAO J, GUO N. Multiscale modeling of compaction bands in saturated high-porosity sandstones[J]. Engineering Geology, 2019, 261: 105282. doi: 10.1016/j.enggeo.2019.105282
    [23]
    WU H, GUO N, ZHAO J. Multiscale modeling and analysis of compaction bands in high-porosity sandstones[J]. Acta Geotechnica, 2018, 13(3): 575-599. doi: 10.1007/s11440-017-0560-2
    [24]
    WU H, ZHAO J, GUO N. Multiscale insights into borehole instabilities in high-porosity sandstones[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3450-3473. doi: 10.1029/2017JB015366
    [25]
    WU H, PAPAZOGLOU A, VIGGIANI G, et al. Compaction bands in tuffeau de maastricht: insights from X-ray tomography and multiscale modeling[J]. Acta Geotechnica, 2020, 15(1): 39-55. doi: 10.1007/s11440-019-00904-9
    [26]
    GUO N, ZHAO J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[J]. International Journal for Numerical Methods in Engineering, 2014, 99(11): 789-818. doi: 10.1002/nme.4702
    [27]
    GUO N, ZHAO J. 3D multiscale modeling of strain localization in granular media[J]. Computers and Geotechnics, 2016, 80: 360-372.
    [28]
    GUO N, ZHAO J. Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305(9): 768-785.
    [29]
    蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [30]
    蒋明镜, 石安宁, 刘俊, 等. 结构性砂土力学特性三维离散元分析[J]. 岩土工程学报, 2019, 41(增刊2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2002.htm

    JIANG Ming-jing, SHI An-ning, LIU Jun, et al. Three-dimensional distinct element analysis of mechanical properties of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2002.htm
    [31]
    徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm

    XU Kun, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
    [32]
    WU H, ZHAO J, LIANG W. The Signature of deformation bands in porous sandstones[J]. Rock Mechanics and Rock Engineering, 2020.
    [33]
    HAIMSON B C, KOVACICH J. Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts[J]. Engineering Geology, 2003, 69(3/4): 219-231.

Catalog

    Article views (365) PDF downloads (153) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return