Citation: | WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008 |
[1] |
WONG T F, DAVID C, ZHU W. The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation[J]. Journal of Geophysical Research, 1997, 102(B2): 3009-3025. doi: 10.1029/96JB03281
|
[2] |
TEMBE S, BAUD P, WONG T F. Stress conditions for the propagation of discrete compaction bands in porous sandstone[J]. Journal of Geophysical Research, 2008, 113: B09409.
|
[3] |
BAUD P, KLEIN E, WONG T F. Compaction localization in porous sandstones: apatial evolution of damage and acoustic emission activity[J]. Journal of Structural Geology, 2004, 26(4): 603-624. doi: 10.1016/j.jsg.2003.09.002
|
[4] |
BÉSUELLE P, DESRUES J, RAYNAUD S. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(8): 1223-1237. doi: 10.1016/S1365-1609(00)00057-5
|
[5] |
DAS A, TENGATTINI A, NGUYEN G D, et al. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables Part II: validation and localization analysis[J]. Journal of the Mechanics and Physics of Solids, 2014, 70(1): 382-405.
|
[6] |
AYDIN A, BORJA R I, EICHHUBL P. Geological and mathematical framework for failure modes in granular rock[J]. Journal of Structural Geology, 2006, 28(1): 83-98. doi: 10.1016/j.jsg.2005.07.008
|
[7] |
ISSEN K A, RUDNICKI J W. Conditions for compaction bands in porous rock[J]. Journal of Geophysical Research, 2000, 105(B9): 21529-21536. doi: 10.1029/2000JB900185
|
[8] |
MARKETOS G, BOLTON M D. Compaction bands simulated in discrete element models[J]. Journal of Structural Geology, 2009, 31(5): 479-490. doi: 10.1016/j.jsg.2009.03.002
|
[9] |
DATTOLA G, DI PRISCO C, REDAELLI I, et al. A distinct element method numerical investigation of compaction processes in highly porous cemented granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(11): 1101-1130. doi: 10.1002/nag.2241
|
[10] |
VARDOULAKIS I G, SULEM J, GUENOT A. Borehole instabilities as bifurcation phenomena[J]. International Journal of Rock Mechanics and Mining Sciences and, 1988, 25(3): 159-170. doi: 10.1016/0148-9062(88)92298-X
|
[11] |
郤保平, 赵阳升, 张昌锁, 等. 高温高压下花岗岩中钻孔变形规律实验研究[J]. 岩土工程学报, 2010, 32(2): 253-258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002018.htm
XI Bao-ping, ZHAO Yang-sheng, ZHANG Chang-suo, et al. Drilling deformation in granite under high temperatures and stresses[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 253-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002018.htm
|
[12] |
PAPANASTASIOU P C, VARDOULAKIS I G. Numerical treatment of progressive localization in relation to borehole stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(6): 389-424. doi: 10.1002/nag.1610160602
|
[13] |
PARDOEN B, LEVASSEUR S, COLLIN F. Using local second gradient model and shear strain localisation to model the excavation damaged zone in unsaturated claystone[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 691-714. doi: 10.1007/s00603-014-0580-2
|
[14] |
RAHMATI H, NOURI A, CHAN D, et al. Simulation of drilling-induced compaction bands using discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(1): 37-50. doi: 10.1002/nag.2194
|
[15] |
LEE H, MOON T, HAIMSON B C. Borehole breakouts induced in arkosic sandstones and a discrete element analysis[J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1369-1388. doi: 10.1007/s00603-015-0812-0
|
[16] |
DUAN K, KWOK C Y. Evolution of stress-induced borehole breakout in inherently anisotropic rock: insights from discrete element modeling[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2361-2381. doi: 10.1002/2015JB012676
|
[17] |
HAIMSON B C. Micromechanisms of borehole instability leading to breakouts in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 157-173. doi: 10.1016/j.ijrmms.2006.06.002
|
[18] |
LEE M, HAIMSON B C. Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism[J]. International Journal of Rock Mechanics and Mining Sciences and, 1993, 30(7): 1039-1045. doi: 10.1016/0148-9062(93)90069-P
|
[19] |
HAIMSON B C, LEE H. Borehole breakouts and compaction bands in two high-porosity sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 287-301. doi: 10.1016/j.ijrmms.2003.09.001
|
[20] |
BAUD P, REUSCHLÉ T, JI Y, et al. Mechanical compaction and strain localization in Bleurswiller sandstone[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(9): 6501-6522. doi: 10.1002/2015JB012192
|
[21] |
DRESEN G, STANCHITS S, RYBACKI E. Borehole breakout evolution through acoustic emission location analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 426-435. doi: 10.1016/j.ijrmms.2009.12.010
|
[22] |
WU H, ZHAO J, GUO N. Multiscale modeling of compaction bands in saturated high-porosity sandstones[J]. Engineering Geology, 2019, 261: 105282. doi: 10.1016/j.enggeo.2019.105282
|
[23] |
WU H, GUO N, ZHAO J. Multiscale modeling and analysis of compaction bands in high-porosity sandstones[J]. Acta Geotechnica, 2018, 13(3): 575-599. doi: 10.1007/s11440-017-0560-2
|
[24] |
WU H, ZHAO J, GUO N. Multiscale insights into borehole instabilities in high-porosity sandstones[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3450-3473. doi: 10.1029/2017JB015366
|
[25] |
WU H, PAPAZOGLOU A, VIGGIANI G, et al. Compaction bands in tuffeau de maastricht: insights from X-ray tomography and multiscale modeling[J]. Acta Geotechnica, 2020, 15(1): 39-55. doi: 10.1007/s11440-019-00904-9
|
[26] |
GUO N, ZHAO J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[J]. International Journal for Numerical Methods in Engineering, 2014, 99(11): 789-818. doi: 10.1002/nme.4702
|
[27] |
GUO N, ZHAO J. 3D multiscale modeling of strain localization in granular media[J]. Computers and Geotechnics, 2016, 80: 360-372.
|
[28] |
GUO N, ZHAO J. Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305(9): 768-785.
|
[29] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[30] |
蒋明镜, 石安宁, 刘俊, 等. 结构性砂土力学特性三维离散元分析[J]. 岩土工程学报, 2019, 41(增刊2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2002.htm
JIANG Ming-jing, SHI An-ning, LIU Jun, et al. Three-dimensional distinct element analysis of mechanical properties of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2002.htm
|
[31] |
徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
XU Kun, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
|
[32] |
WU H, ZHAO J, LIANG W. The Signature of deformation bands in porous sandstones[J]. Rock Mechanics and Rock Engineering, 2020.
|
[33] |
HAIMSON B C, KOVACICH J. Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts[J]. Engineering Geology, 2003, 69(3/4): 219-231.
|