Citation: | YANG Shu-han, ZHOU Wei, MA Gang, LIU Jia-ying, QI Tian-qi. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. DOI: 10.11779/CJGE202010014 |
[1] |
李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
LI Gang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
|
[2] |
程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007, 29(8): 1151-1158. doi: 10.3321/j.issn:1000-4548.2007.08.006
CHENG Zhan-lin, DING Hong-shun, WU Liang-ping. Experimental study on mechanical behaviour of granular material[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.006
|
[3] |
张嘎, 王刚, 尹振宇, 等. 土的基本特性及本构关系[C]//第十三届全国土力学及岩土工程学术大会论文集, 2019, 天津: 1-15.
ZHANG Ga, WANG Gang, YIN Zhen-yu, et al. A critical review on the research of fundamental behavior and constitutive relationship of the soil[C]//Proc of the 13th Chinese National Conference on Soil Mechanics and Geotechnical Engineering, 2019, Tianjin: 1-15. (in Chinese)
|
[4] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[5] |
ANTONY S J, KRUYT N P. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media[J]. Physical Review E, 2009, 79(3): 031308. doi: 10.1103/PhysRevE.79.031308
|
[6] |
刘嘉英, 周伟, 马刚, 等. 颗粒材料三维应力路径下的接触组构特性[J]. 力学学报, 2019, 51(1): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901004.htm
LIU Jia-ying, ZHOU Wei, MA Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901004.htm
|
[7] |
周伟, 刘东, 马刚, 等. 基于随机散粒体模型的堆石体真三轴数值试验研究[J]. 岩土工程学报, 2012, 34(4): 748-755. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204027.htm
ZHOU Wei, LIU Dong, MA Gang, et al. Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204027.htm
|
[8] |
马刚, 周伟, 常晓林, 等. 堆石体三轴剪切试验的三维细观数值模拟[J]. 岩土工程学报, 2011, 33(5): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm
MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. 3D mesoscopic numerical simulation of traxial shear tests for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm
|
[9] |
常晓林, 马刚, 周伟, 等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34(4): 646-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm
CHANG Xiao-lin, MA Gang, ZHOU Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm
|
[10] |
ZHAO S W, ZHANG N, ZHOU X W, et al. Particle shape effects on fabric of granular random packing[J]. Powder Technology, 2017, 310: 175-186. doi: 10.1016/j.powtec.2016.12.094
|
[11] |
ZHOU W, YANG L F, MA G, et al. Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509. doi: 10.1007/s10035-015-0571-3
|
[12] |
ROTHENBURG L, KRUYT N P. Critical state and evolution of coordination number in simulated granular materials[J]. International Journal of Solids and Structures, 2004, 41(21): 5763-5774. doi: 10.1016/j.ijsolstr.2004.06.001
|
[13] |
ZHOU W, LIU J Y, MA G, et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials[J]. Acta Geotechnica, 2017, 12(3): 527-540. doi: 10.1007/s11440-017-0530-8
|
[14] |
ZHOU W, WU W, MA G, et al. Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM[J]. Granular Matter, 2017, 19(4): 1-15.
|
[15] |
DAI B B, YANG J, ZHOU C Y. Observed effects of interparticle friction and particle size on shear behavior of granular materials[J]. International Journal of Geomechanics, 2016, 16(1): 1-11.
|
[16] |
SANDEEP C S, SENETAKIS K. Effect of young's modulus and surface roughness on the inter-particle friction of granular materials[J]. Materials, 2018, 11(2): 217-227. doi: 10.3390/ma11020217
|
[17] |
SENETAKIS K, SANDEEP C S, TODISCO M C. Dynamic inter-particle friction of crushed limestone surfaces[J]. Tribology International, 2017, 111: 1-8. doi: 10.1016/j.triboint.2017.02.036
|
[18] |
HUANG X, HANLEY K J, O'SULLIVAN C, et al. Exploring the influence of interparticle friction on critical state behaviour using DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(12): 1276-1297. doi: 10.1002/nag.2259
|
[19] |
BARRETO D, O'SULLIVAN C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions[J]. Granular Matter, 2012, 14(4): 505-521. doi: 10.1007/s10035-012-0354-z
|
[20] |
KRUYT N P, ANTONY S J. Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation[J]. Physical Review E, 2007, 75(5): 051308. doi: 10.1103/PhysRevE.75.051308
|
[21] |
RADJAI F, JEAN M, MOREAU J J, et al. Force distributions in dense two-dimensional granular systems[J]. Physical Review Letters, 1996, 77(2): 274-277. doi: 10.1103/PhysRevLett.77.274
|
[22] |
THORNTON C. Quasi-static shear deformation of particulate media[J]. Phil Trans R Soc Lond A, 1998, 356: 2763-2782. doi: 10.1098/rsta.1998.0296
|
[23] |
LIU J Y, ZHOU W, MA G. Strong contacts, connectivity and fabric anisotropy in granular materials: a 3D perspective[J]. Powder Technology, 2020, 366: 741-760.
|
[24] |
SAZZAD M M, SUZUKI K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM[J]. Granular Matter, 2013, 15(5): 583-593. doi: 10.1007/s10035-013-0422-z
|
[25] |
KLOSS C, GONIVA C. LIGGGHTS-open source discrete element simulations of granular materials based on Lammps[J]. Suppl Proc Mater Fabr Prop Charact Model, 2011(2): 781-788.
|
[26] |
刘嘉英, 马刚, 周伟, 等. 抗转动特性对颗粒材料分散性失稳的影响研究[J]. 岩土力学, 2017, 38(5): 1472-1480. doi: 10.16285/j.rsm.2017.05.030
LIU Jia-ying, MA Gang, ZHOU Wei, et al. Impact of rotation resistance on diffuse failure of granular materials[J]. Rock and Soil Mechanics, 2017, 38(5): 1472-1480. (in Chinese) doi: 10.16285/j.rsm.2017.05.030
|
[27] |
HUANG X, HANLEY K J, O'SULLIVAN C, et al. DEM analysis of the influence of the intermediate stress ratio on the critical-state behavior of granular materials[J]. Granular Matter, 2014, 16(5): 641-655. doi: 10.1007/s10035-014-0520-6
|
[28] |
SKINNER A E. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles[J]. Géotechnique, 1969, 19(1): 150-157. doi: 10.1680/geot.1969.19.1.150
|
[29] |
THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 47(2): 319-329.
|
[30] |
YANG Z X, YANG J, WANG L Z. On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis[J]. Granular matter, 2012, 14(3): 433-447. doi: 10.1007/s10035-012-0348-x
|
[31] |
PENA A, LIZCANO A, ALONSO M F, et al. Biaxial test simulations using a packing of polygonal particles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(2): 143-160. doi: 10.1002/nag.618
|
[32] |
ODA M, KONISHI J, NEMAT N S. Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling[J]. Mechanics of Materials, 1982, 1(4): 269-283. doi: 10.1016/0167-6636(82)90027-8
|
[33] |
HEYMAN J, COULOMB C A. Coulomb's analysis of soil thrust[J]. Geotechnical Engineering, 1998, 131(2): 83-88.
|
[34] |
DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Q Appl Math, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
|
[35] |
LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. J Geotech Eng Div, 1975, 101(10): 1037-1053. doi: 10.1061/AJGEB6.0000204
|
[36] |
MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[C]//Proceedings of the Japan Society of Civil Engineers, 1974: 59-70.
|
[37] |
姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学:(E辑): 2004, 34(11): 1283-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm
YAO Yang-ping, LU De-chun, ZHOU An-nan, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E, 2004, 34(11): 1283-1299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm
|
[38] |
俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. doi: 10.3321/j.issn:1000-4548.1994.02.001
YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.02.001
|
[39] |
施维成, 朱俊高, 刘汉龙. 中主应力对砾石料变形和强度的影响[J]. 岩土工程学报, 2008, 30(10): 1449-1453. doi: 10.3321/j.issn:1000-4548.2008.10.005
SHI Wei-cheng, ZHU Jun-gao, LIU Han-long. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.005
|
[40] |
施维成. 粗粒土真三轴试验与本构模型研究[D]. 南京: 河海大学, 2008.
SHI Wei-cheng. True Triaxial Tests on Coarse-Grained Soils and Study on Constitutive Model[D]. Nanjing: Hohai University, 2008. (in Chinese)
|
[41] |
BRATHERG I, RADJAI F, HANSEN A. Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds[J]. Physical Review E, 2002, 66(3): 031303. doi: 10.1103/PhysRevE.66.031303
|
[42] |
史旦达, 周健, 刘文白, 等. 砂土直剪力学形状的非圆颗粒模拟与宏细观机理研究[J]. 岩土工程学报, 2010, 32(10): 1557-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201010015.htm
SHI Dan-da, ZHOU Jian, LIU Wen-bai, et al. Exploring macro- and miro-scale responses of sand in direct shear tests by numerical simulations using non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1557-1565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201010015.htm
|
[43] |
SATAKE M. The role of the characteristic line in static soil behavior[C]//IUTAM Symposium on Deformation and Failure of Granular Materials, A A Balkema, 1982, Delft: 63-68.
|
[44] |
ODA M. Fabric tensor for discontinuous geological materials[J]. Soils and Foundations, 1982, 22(4): 96-108. doi: 10.3208/sandf1972.22.4_96
|
[45] |
THORNTON C, ZHANG L. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media[J]. Géotechnique, 2010, 5: 333-341.
|
[46] |
YIMSIRI S, SOGA K. DEM analysis of soil fabric effects on behaviour of sand[J]. Géotechnique, 2010, 60(6): 483-495. doi: 10.1680/geot.2010.60.6.483
|
[47] |
GUO N, ZHAO J D. The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics, 2013, 47: 1-15. doi: 10.1016/j.compgeo.2012.07.002
|