• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Shu-han, ZHOU Wei, MA Gang, LIU Jia-ying, QI Tian-qi. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. DOI: 10.11779/CJGE202010014
Citation: YANG Shu-han, ZHOU Wei, MA Gang, LIU Jia-ying, QI Tian-qi. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. DOI: 10.11779/CJGE202010014

Mechanism of inter-particle friction effect on 3D mechanical response of granular materials

More Information
  • Received Date: January 08, 2020
  • Available Online: December 07, 2022
  • The inter-particle friction is regarded as an important factor that affects the stress and deformation characteristics of granular materials. The existing researches mainly focus on the influences of inter-particle friction on the accumulation characteristics and the macro shear strength, but the mechanism of its influences on the granular materials under the complex stress path has not yet been clarified. A series of true triaxial tests on granular materials are carried out by using the discrete element method (DEM), and the friction coefficient μ is changed to reflect the effects of inter-particle friction on the macro-mechanical properties. The prediction capability of four three-dimensional strength criteria under different inter-particle frictions is discussed, and it is found that the Lade-Duncan and Matsuoka-Nakai criteria have better prediction capability when 0.2<μ≤0.5. In addition, the stress tensors, the distribution of coordination numbers and the fabric tensors of strong and weak contact networks (divided by average contact force) are also studied. The results show that with the increase of inter-particle friction μ, the number of particles forming "force chains" in the strong contact network is basically unchanged, but the normal contact force and normal contact force anisotropy in the strong contact network increases significantly, which mainly causes the enhancement of the macro shear strength. The distribution of coordination numbers of the weak contact network changes greatly with the value of μ, which contributes significantly to the increase of the dilatancy of the particle system.
  • [1]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Gang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [2]
    程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007, 29(8): 1151-1158. doi: 10.3321/j.issn:1000-4548.2007.08.006

    CHENG Zhan-lin, DING Hong-shun, WU Liang-ping. Experimental study on mechanical behaviour of granular material[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.006
    [3]
    张嘎, 王刚, 尹振宇, 等. 土的基本特性及本构关系[C]//第十三届全国土力学及岩土工程学术大会论文集, 2019, 天津: 1-15.

    ZHANG Ga, WANG Gang, YIN Zhen-yu, et al. A critical review on the research of fundamental behavior and constitutive relationship of the soil[C]//Proc of the 13th Chinese National Conference on Soil Mechanics and Geotechnical Engineering, 2019, Tianjin: 1-15. (in Chinese)
    [4]
    蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [5]
    ANTONY S J, KRUYT N P. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media[J]. Physical Review E, 2009, 79(3): 031308. doi: 10.1103/PhysRevE.79.031308
    [6]
    刘嘉英, 周伟, 马刚, 等. 颗粒材料三维应力路径下的接触组构特性[J]. 力学学报, 2019, 51(1): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901004.htm

    LIU Jia-ying, ZHOU Wei, MA Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901004.htm
    [7]
    周伟, 刘东, 马刚, 等. 基于随机散粒体模型的堆石体真三轴数值试验研究[J]. 岩土工程学报, 2012, 34(4): 748-755. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204027.htm

    ZHOU Wei, LIU Dong, MA Gang, et al. Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204027.htm
    [8]
    马刚, 周伟, 常晓林, 等. 堆石体三轴剪切试验的三维细观数值模拟[J]. 岩土工程学报, 2011, 33(5): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm

    MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. 3D mesoscopic numerical simulation of traxial shear tests for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm
    [9]
    常晓林, 马刚, 周伟, 等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34(4): 646-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm

    CHANG Xiao-lin, MA Gang, ZHOU Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm
    [10]
    ZHAO S W, ZHANG N, ZHOU X W, et al. Particle shape effects on fabric of granular random packing[J]. Powder Technology, 2017, 310: 175-186. doi: 10.1016/j.powtec.2016.12.094
    [11]
    ZHOU W, YANG L F, MA G, et al. Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509. doi: 10.1007/s10035-015-0571-3
    [12]
    ROTHENBURG L, KRUYT N P. Critical state and evolution of coordination number in simulated granular materials[J]. International Journal of Solids and Structures, 2004, 41(21): 5763-5774. doi: 10.1016/j.ijsolstr.2004.06.001
    [13]
    ZHOU W, LIU J Y, MA G, et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials[J]. Acta Geotechnica, 2017, 12(3): 527-540. doi: 10.1007/s11440-017-0530-8
    [14]
    ZHOU W, WU W, MA G, et al. Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM[J]. Granular Matter, 2017, 19(4): 1-15.
    [15]
    DAI B B, YANG J, ZHOU C Y. Observed effects of interparticle friction and particle size on shear behavior of granular materials[J]. International Journal of Geomechanics, 2016, 16(1): 1-11.
    [16]
    SANDEEP C S, SENETAKIS K. Effect of young's modulus and surface roughness on the inter-particle friction of granular materials[J]. Materials, 2018, 11(2): 217-227. doi: 10.3390/ma11020217
    [17]
    SENETAKIS K, SANDEEP C S, TODISCO M C. Dynamic inter-particle friction of crushed limestone surfaces[J]. Tribology International, 2017, 111: 1-8. doi: 10.1016/j.triboint.2017.02.036
    [18]
    HUANG X, HANLEY K J, O'SULLIVAN C, et al. Exploring the influence of interparticle friction on critical state behaviour using DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(12): 1276-1297. doi: 10.1002/nag.2259
    [19]
    BARRETO D, O'SULLIVAN C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions[J]. Granular Matter, 2012, 14(4): 505-521. doi: 10.1007/s10035-012-0354-z
    [20]
    KRUYT N P, ANTONY S J. Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation[J]. Physical Review E, 2007, 75(5): 051308. doi: 10.1103/PhysRevE.75.051308
    [21]
    RADJAI F, JEAN M, MOREAU J J, et al. Force distributions in dense two-dimensional granular systems[J]. Physical Review Letters, 1996, 77(2): 274-277. doi: 10.1103/PhysRevLett.77.274
    [22]
    THORNTON C. Quasi-static shear deformation of particulate media[J]. Phil Trans R Soc Lond A, 1998, 356: 2763-2782. doi: 10.1098/rsta.1998.0296
    [23]
    LIU J Y, ZHOU W, MA G. Strong contacts, connectivity and fabric anisotropy in granular materials: a 3D perspective[J]. Powder Technology, 2020, 366: 741-760.
    [24]
    SAZZAD M M, SUZUKI K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM[J]. Granular Matter, 2013, 15(5): 583-593. doi: 10.1007/s10035-013-0422-z
    [25]
    KLOSS C, GONIVA C. LIGGGHTS-open source discrete element simulations of granular materials based on Lammps[J]. Suppl Proc Mater Fabr Prop Charact Model, 2011(2): 781-788.
    [26]
    刘嘉英, 马刚, 周伟, 等. 抗转动特性对颗粒材料分散性失稳的影响研究[J]. 岩土力学, 2017, 38(5): 1472-1480. doi: 10.16285/j.rsm.2017.05.030

    LIU Jia-ying, MA Gang, ZHOU Wei, et al. Impact of rotation resistance on diffuse failure of granular materials[J]. Rock and Soil Mechanics, 2017, 38(5): 1472-1480. (in Chinese) doi: 10.16285/j.rsm.2017.05.030
    [27]
    HUANG X, HANLEY K J, O'SULLIVAN C, et al. DEM analysis of the influence of the intermediate stress ratio on the critical-state behavior of granular materials[J]. Granular Matter, 2014, 16(5): 641-655. doi: 10.1007/s10035-014-0520-6
    [28]
    SKINNER A E. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles[J]. Géotechnique, 1969, 19(1): 150-157. doi: 10.1680/geot.1969.19.1.150
    [29]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 47(2): 319-329.
    [30]
    YANG Z X, YANG J, WANG L Z. On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis[J]. Granular matter, 2012, 14(3): 433-447. doi: 10.1007/s10035-012-0348-x
    [31]
    PENA A, LIZCANO A, ALONSO M F, et al. Biaxial test simulations using a packing of polygonal particles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(2): 143-160. doi: 10.1002/nag.618
    [32]
    ODA M, KONISHI J, NEMAT N S. Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling[J]. Mechanics of Materials, 1982, 1(4): 269-283. doi: 10.1016/0167-6636(82)90027-8
    [33]
    HEYMAN J, COULOMB C A. Coulomb's analysis of soil thrust[J]. Geotechnical Engineering, 1998, 131(2): 83-88.
    [34]
    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Q Appl Math, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
    [35]
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. J Geotech Eng Div, 1975, 101(10): 1037-1053. doi: 10.1061/AJGEB6.0000204
    [36]
    MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[C]//Proceedings of the Japan Society of Civil Engineers, 1974: 59-70.
    [37]
    姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学:(E辑): 2004, 34(11): 1283-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm

    YAO Yang-ping, LU De-chun, ZHOU An-nan, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E, 2004, 34(11): 1283-1299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm
    [38]
    俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. doi: 10.3321/j.issn:1000-4548.1994.02.001

    YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.02.001
    [39]
    施维成, 朱俊高, 刘汉龙. 中主应力对砾石料变形和强度的影响[J]. 岩土工程学报, 2008, 30(10): 1449-1453. doi: 10.3321/j.issn:1000-4548.2008.10.005

    SHI Wei-cheng, ZHU Jun-gao, LIU Han-long. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.005
    [40]
    施维成. 粗粒土真三轴试验与本构模型研究[D]. 南京: 河海大学, 2008.

    SHI Wei-cheng. True Triaxial Tests on Coarse-Grained Soils and Study on Constitutive Model[D]. Nanjing: Hohai University, 2008. (in Chinese)
    [41]
    BRATHERG I, RADJAI F, HANSEN A. Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds[J]. Physical Review E, 2002, 66(3): 031303. doi: 10.1103/PhysRevE.66.031303
    [42]
    史旦达, 周健, 刘文白, 等. 砂土直剪力学形状的非圆颗粒模拟与宏细观机理研究[J]. 岩土工程学报, 2010, 32(10): 1557-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201010015.htm

    SHI Dan-da, ZHOU Jian, LIU Wen-bai, et al. Exploring macro- and miro-scale responses of sand in direct shear tests by numerical simulations using non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1557-1565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201010015.htm
    [43]
    SATAKE M. The role of the characteristic line in static soil behavior[C]//IUTAM Symposium on Deformation and Failure of Granular Materials, A A Balkema, 1982, Delft: 63-68.
    [44]
    ODA M. Fabric tensor for discontinuous geological materials[J]. Soils and Foundations, 1982, 22(4): 96-108. doi: 10.3208/sandf1972.22.4_96
    [45]
    THORNTON C, ZHANG L. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media[J]. Géotechnique, 2010, 5: 333-341.
    [46]
    YIMSIRI S, SOGA K. DEM analysis of soil fabric effects on behaviour of sand[J]. Géotechnique, 2010, 60(6): 483-495. doi: 10.1680/geot.2010.60.6.483
    [47]
    GUO N, ZHAO J D. The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics, 2013, 47: 1-15. doi: 10.1016/j.compgeo.2012.07.002
  • Cited by

    Periodical cited type(9)

    1. 张慧梅,马志敏,陈世官,王赋宇. 正交-响应面法在PBM细观参数标定中的应用. 水资源与水工程学报. 2024(02): 183-191 .
    2. 刘红帅,张东涛. 基于正交-响应面法的砂土细观参数标定. 吉林大学学报(地球科学版). 2024(04): 1280-1290 .
    3. 姜玥,邹文栋. 基于PFC~(3D)的空心圆柱灰砂岩宏细观参数相关性研究. 煤炭科学技术. 2024(10): 78-89 .
    4. 付旭,侯定贵,李茜,王林台,刘晓立. 软土蠕变颗粒流宏细观参数特征及标定方法. 土工基础. 2023(03): 501-505 .
    5. 王晋伟,迟世春,闫世豪,郭宇,周新杰. 室内缩尺级配堆石料力学参数的表征单元体积. 浙江大学学报(工学版). 2023(07): 1418-1427 .
    6. 张杰,聂如松,黄茂桐,谭永长,肖玲. 基于柔性边界的非饱和接触模型参数标定方法. 工程科学与技术. 2023(06): 132-141 .
    7. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    8. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    9. 徐锦元,张政武. 可调拱梁稳定性分析. 机械研究与应用. 2021(02): 13-17 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return