Citation: | SHEN Zhi-fu, ZHANG Xu-yin, GAO Feng, WANG Zhi-hua, GAO Hong-mei. Discrete element method for clay considering irregular planar shape of clay platelets[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1654-1662. DOI: 10.11779/CJGE202209010 |
[1] |
YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Engineering Geology, 1999, 54(1/2): 83–91.
|
[2] |
唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560–565. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804018.htm
TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560–565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804018.htm
|
[3] |
尹小涛. 基于微结构量化分析的软土各向异性特征研究[J]. 地下空间与工程学报, 2015, 11(增刊2): 486–490. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2021.htm
YIN Xiao-tao. Study on anisotropy of soft soil based on quantitative analysis of microstructure[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S2): 486–490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2021.htm
|
[4] |
HICHER P Y, WAHYUDI H, TESSIER D. Microstructural analysis of inherent and induced anisotropy in clay[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5(5): 341–371. doi: 10.1002/1099-1484(200007)5:5<341::AID-CFM99>3.0.CO;2-C
|
[5] |
WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils: Ⅱ effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43(6): 601–617. doi: 10.1139/t06-027
|
[6] |
刘治清, 宋晶, 杨玉双, 等. 饱和细粒土固结过程的三维孔隙演化特征[J]. 工程地质学报, 2016, 24(5): 931–940. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605024.htm
LIU Zhi-qing, SONG Jing, YANG Yu-shuang, et al. Three-dimensional pores evolution characteristics during consolidation process of saturated fine-grained soil[J]. Journal of Engineering Geology, 2016, 24(5): 931–940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605024.htm
|
[7] |
ANANDARAJAH A. Discrete element modeling of leaching-induced apparent overconsolidation in kaolinite[J]. Soils and Foundations, 2003, 43(6): 1–12. doi: 10.3208/sandf.43.6_1
|
[8] |
BAYESTEH H, MIRGHASEMI A A. Numerical simulation of pore fluid characteristic effect on the volume change behavior of montmorillonite clays[J]. Computers and Geotechnics, 2013, 48: 146–155. doi: 10.1016/j.compgeo.2012.10.007
|
[9] |
商翔宇, 鲁巨明, 杨晨, 等. 考虑黏土特性的离散元程序开发[J]. 防灾减灾工程学报, 2016, 36(4): 657–663. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm
SHANG Xiang-yu, LU Ju-ming, YANG Chen, et al. Development of discrete element code considering the characteristics of clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(4): 657–663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm
|
[10] |
YAO M, ANANDARAJAH A. Three-dimensional discrete element method of analysis of clays[J]. Journal of Engineering Mechanics, 2003, 129(6): 585–596. doi: 10.1061/(ASCE)0733-9399(2003)129:6(585)
|
[11] |
KATTI D R, MATAR M I, KATTI K S, et al. Multiscale modeling of swelling clays: a computational and experimental approach[J]. KSCE Journal of Civil Engineering, 2009, 13(4): 243–255. doi: 10.1007/s12205-009-0243-0
|
[12] |
EBRAHIMI D, WHITTLE A J, PELLENQ R J M. Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets[J]. The Journal of Chemical Physics, 2014, 140(15): 154309. doi: 10.1063/1.4870932
|
[13] |
SJOBLOM K J. Coarse-grained molecular dynamics approach to simulating clay behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 06015013. doi: 10.1061/(ASCE)GT.1943-5606.0001394
|
[14] |
GUO Y, YU X. A holistic computational model for prediction of clay suspension structure[J]. International Journal of Sediment Research, 2019, 34(4): 345–354. doi: 10.1016/j.ijsrc.2018.12.002
|
[15] |
JARADAT K A, ABDELAZIZ S L. On the use of discrete element method for multi-scale assessment of clay behavior[J]. Computers and Geotechnics, 2019, 112: 329–341. doi: 10.1016/j.compgeo.2019.05.001
|
[16] |
LU N, ANDERSON M T, LIKOS W J, et al. A discrete element model for kaolinite aggregate formation during sedimentation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 965–980. doi: 10.1002/nag.656
|
[17] |
JUN S M, JIANG M J, ZHOU C B. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling[J]. Computers and Geotechnics, 2014, 56: 168–180. doi: 10.1016/j.compgeo.2013.12.003
|
[18] |
LONDON F. Zur theorie und systematik der molekularkräfte[J]. Zeitschrift Für Physik, 1930, 63(3/4): 245–279. http://www.mendeley.com/research/zur-theorie-und-systematik-der-molekularkrfte/
|
[19] |
LONDON F. On the theory and systematics of the molecular forces[J]. Journal of Physics, 1930, 63(3/4): 245–279. (in German) doi: 10.1142/9789812795762_0023
|
[20] |
ITASCA CONSULTING GROUP, INC. Documentation of Particle Flow Code 3D V6.0[M]. Minneapolis, 2019.
|
[21] |
蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195–254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195–254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[1] | SHEN Zhi-fu, GAO Feng, JIANG Ming-jing, WANG Zhi-hua, LIU Lu, GAO Hong-mei. An easy method to calculate van der Waals interaction between clay plate and spherical particle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 776-782. DOI: 10.11779/CJGE202104021 |
[2] | WANG Xue-kui, LI Dong-jun, ZHU Yao-ting, ZHANG Jia-ying, YUAN Fang-long. Particle shape analysis of clay based on digital image technology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 168-171. DOI: 10.11779/CJGE2020S2030 |
[3] | XU Ri-qing, JU Lu-ying, YU Jian-lin, JIANG Jia-qi, DING Pan. Egg-shaped bounding surface model for saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2170-2179. DOI: 10.11779/CJGE202012002 |
[4] | LI Shan-mei, LIU Zhi-kui, MENG Jian-ping. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. DOI: 10.11779/CJGE201710009 |
[5] | ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 115-119. DOI: 10.11779/CJGE2015S1023 |
[6] | LIU Guang, RONG Guan, PENG Jun, HOU Di, ZHOU Chuang-bing. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 540-550. |
[7] | ZHANG Chong, SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1281-1286. |
[8] | ZHANG Peisen, SHI Jianyong. Development of modified Cam-clay model considering effect of shape parameters and its implementation and validation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 26-31. |
[9] | TU Xinbin, WANG Sijing. Particle shape descriptor in digital image analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 659-662. |
[10] | CHEN Su, PENG Jianzhong, HAN Jingyun, GU Hu. Experimental research on the shape and size effect of cement-stabilized soil specimen strength[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 580-583. |
1. |
邵新荷,于海臣,季节,王漾,朱美蓝,张思旸,姚敬宇. 细粒土中黏土结构分类及其对孔隙分布的影响. 科技通报. 2023(08): 81-87 .
![]() |