• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Shan-mei, LIU Zhi-kui, MENG Jian-ping. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. DOI: 10.11779/CJGE201710009
Citation: LI Shan-mei, LIU Zhi-kui, MENG Jian-ping. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. DOI: 10.11779/CJGE201710009

Effect of pH value on boundary water content of red clay in Guilin and its mechanism

More Information
  • Received Date: July 06, 2016
  • Published Date: October 24, 2017
  • The liquid and plastic limits are the important factors to reflect the penetration resistance, anti-erosion and anti-shear of soils. The liquid ad plastic limits of the red clay in Guilin soaked in the acid and alkali solutions are tested to study its influencing factors and mechanism of boundary water content. The test results show that the plastic limit decreases and the liquid limit or plastic index decreases and then increases with the decrease of pH value in the acid solution. The liquid limit or plastic limit decreases and then increases, and the plasticity index exhibits change of fold line with the increase of pH value when soaked in the alkaline solution. It is shown that the influencing factors of the traditional diffusion layer thickness and the electric double layer theory are not applicable to the analysis of the consistency limits of Guilin red clay with different pH values. It is assumed that the liquid or plastic limit of the same soil has the determined potential. The qualitative analysis method on the consistency of red clay is proposed based on the double layer model. The formula for calculating the diffusion layer thickness of the red clay in Guilin soaked in the acid and alkali solutions is derived by considering the effects of various components of solution based on the traditional double layer theory. The new formula can make up for the deficiency that the conventional one is only applicable to the problem of the constant charge clay in the action of the symmetric electrolyte solution.
  • [1]
    庄雅婷, 黄炎和, 林金石, 等. 崩岗红土层土壤液塑限特性及影响因素研究[J]. 水土保持研究, 2014, 21(3): 208-216. (ZHUAN Ya-ting, HUANG Yan-he, LIN Jin-shi, et al. Study on plastic limit characteristics and influencing factors of soil fluid in the post-collapse red soil layer[J]. Research on Soil and Water Conservation, 2014, 21(3):208-216. (in Chinese))
    [2]
    谭罗荣, 孔令伟. 某类红黏土的基本特性与微观结构模型[J]. 岩土工程学报, 2001, 23(4): 458-262. (TAN Luo-rong, KONG Ling-wei. Fundamental property and microstructure model of red clay[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 458-262. (in Chinese))
    [3]
    朱要强. 贵州红黏土工程分类及土质研究[D]. 贵阳: 贵州大学, 2008. (ZHU Yao-qiang. Classification and soil quality of red clay in Guizhou[D]. Guiyang: Guizhou University, 2008. (in Chinese))
    [4]
    夏小兵. 海口灵山红黏土工程特性研究[D]. 海口: 海南大学, 2010. (XIA Xiao-bing. Study on engineering properties of red clay in Lingshan of Haikou[D]. Haikou: Hainan Univesity, 2010. (in Chinese))
    [5]
    莫百金, 李跃军. 砂砾改良高液限红黏土的试验研究[J]. 公路, 2008(8): 226-229. (MO Bai-jin, LI Yue-jun. Experimental study on improving high liquid limit red clay with sand and gravel[J]. Highway, 2008(8): 226-229. (in Chinese))
    [6]
    刘之葵, 邱晓娟, 雷 轶. 水泥改良桂林红黏土的试验研究[J]. 公路工程, 2016, 41(1): 6-9,19. (LIU Zhi-kui, QIU Xiao-juan, LEI Yi. Experimental study on cement modified red clayin Guilin[J]. Highway Engineering, 2016, 41(1): 6-9,19. (in Chinese))
    [7]
    王继庄. 游离氧化铁对红黏土工程特性的影响[J]. 岩土工程学报, 1983, 5(1): 147-156. (WANG Ji-zhuang. Effect of free iron oxide on the engineering prope of red clay[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 147-156. (in Chinese))
    [8]
    ABDALLAH I H M, AHMED S A, OSAMA T A S. Effects of organic matter on the physical and the physicochemical properties of an illitic soil[J]. Applied Clay Science, 1999, 14(5): 257-278.
    [9]
    TONE K, KAMORI M, SHIBASAKI Y. Adsorbed canons and water film thickness on the kaolinitic clay surface[J]. Journalof the Ceramic Society of Japan, 1993, 101(12): 1395-1399.
    [10]
    伯桐震. 酸污染红土的宏微观特性研究[D]. 昆明: 昆明理工大学, 2012. (BAI Tong-zhen. Study on the macro and micro characteristics of acid contaminated red oil[D]. Kunming: Kunming University of Technology, 2012. (in Chinese))
    [11]
    任礼强. 碱污染红土的宏微观特性研究[D]. 昆明: 昆明理工大学, 2014. (REN Li-qiang. Study on the macro and micro characteristics of alkalinity contaminated red soil[D]. Kunming: Kunming University of Technology, 2014. (in Chinese))
    [12]
    钱建平, 张 力, 迟占东, 等. 桂林市酸雨的时空分布及污染[J]. 地球科学进展, 2012, 27(增刊1): 390-392. (QIAN Jian-ping, ZHANG Li,CHI Zhan-dong,et al. Temporal and spatial distribution of acid rain and mercury pollution in Guilin City[J]. Advancesin Earth Sciences, 2012, 27(S1): 390-392. (in Chinese))
    [13]
    刘之葵, 梁金城. 岩溶区溶洞及土洞对建筑地基的影响[M]. 北京: 地质出版社, 2006: 39. (LIU Zhi-kui, LIANG Jin-cheng. Influence of karst cave and soil cave in karst area on building foundation[M]. Beijing: Geological Publishing House, 1984: 39. (in Chinese))
    [14]
    孙重初. 酸液对红黏土物理力学性质的影响[J]. 岩土工程学报, 1989, 11(4): 89-93. (SUN Chong-chu. The impact of pHysical and mechanical properties on red clay caused by acid solution[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(4): 89-93. (in Chinese))
    [15]
    顾季威. 酸碱废液侵蚀地基土对工程质量的影响[J]. 岩土工程学报, 1988, 10(4): 72-78. (GU Ji-wei. The impact of project quality because of the foundation soil erosion of acid waste liquid[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(4): 72-78. (in Chinese))
    [16]
    孙德安, 高 游, 刘文捷, 等. 红黏土的土水特性及其孔隙分布[J]. 岩土工程学报, 2015, 37(2): 351-356. (SUN De-an, GAOYou, LIU Wen-jie, et al. Soil water characteristics and pore distribution[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. (in Chinese))
    [17]
    吕海波, 曾召田, 尹国强, 等. 广西红黏土矿物成分分析[J]. 工程地质学报, 2012, 20(5): 651-656. (LÜ Hai-bo, ZEGN Zhao-tian, YIN Guo-qiang, et al. Analysis of mineral composition of red clay in Guangxi[J]. Journal of Engineering Geology, 2012, 20(5): 651-656. (in Chinese))
    [18]
    于天仁. 可变电荷土壤的电化学[M]. 北京: 科学出版社, 1993: 16-22. (YU Tian-ren. Electrochemistry of variable charge soils[M]. Beijing: Science Press, 1993: 16-22. (in Chinese))
    [19]
    张效年, 将能慧, 邵宗臣, 等. 土壤电化学性质的研究——红壤对离子的吸附特点与其电荷性质的关系[J]. 土壤学报, 1979, 16(2): 145-156. (ZHANG Xiao-nian, JIANG Neng-hui, SHAO Zong-chen, et al. Studies on electrochemical propertiles of soils—adsorption of ions by red soils in relation to the electric charge of the soil[J]. Actapedologica Sinica, 1979, 16(2): 145-156. (in Chinese))
    [20]
    唐大雄. 工程岩土学[M]. 北京: 地质出版社, 1999: 35-36. (TANG Da-xiong. Engineering rock and soil science[M]. Beijing: Geological Publishing House, 1999: 35-36. (in Chinese))
    [21]
    赵安珍, 张效年. 氧化铝对红壤正、负电荷的影响[J]. 土壤学报, 1992, 29(4): 392-400. (ZHAO An-zhen, ZHANG Xiao-nian. Effect of alumina on the positive and negative charge of red soil[J]. Journal of Soil Science, 1992, 29(4): 392-400. (in Chinese))
    [22]
    陈宗淇. 胶体化学[M]. 北京: 高等教育出版社, 1984. (CHENG Zong-qi. Colloid chemistry[M]. Beijing: Higher Education Press, 1984. (in Chinese))
    [23]
    袁建滨. 黏土中结合水特性及其测试方法研究[D]. 广州:华南理工大学, 2012. (YUAN Jian-bing. Study on the characteristics and test methods of water in clay[D]. Guangzhou: South China University of Technology, 2012. (in Chinese))
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return