• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
Citation: ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021

Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure

More Information
  • Received Date: June 21, 2016
  • Published Date: October 24, 2017
  • Advection and diffusion are important mechanisms of contaminant transport through barriers. Whether flexible-wall permeameter and consolidated specimen must be used in the permeation or diffusion tests on soil-bentonite backfill under low consolidation pressure is still controversial. The soil-bentonite backfill is prepared according to the common construction procedure of cutoff walls. The hydraulic conductivity of the backfill is measured by a flexible-wall permeameter under effective consolidation pressures of 30, 50 and 100 kPa, respectively. The hydraulic conductivity and diffusion coefficient are also measured by rigid-wall column tests. Based on the theory of dynamic leaching tests, a dialysis method is proposed for quick measurement of the effective diffusion coefficient of the backfill. The results of flexible-wall tests show that the hydraulic conductivity of the backfill increases with the hydraulic gradient. There are initial hydraulic gradients ranging from 6.82 to 8 in the flexible-wall tests. The hydraulic conductivity decreases from 5.21×10-8 to 3.78×10-8 cm/s as the consolidation pressure increases from 30 to 100 kPa. Under the consolidation pressure of 10 kPa, the rigid-wall column tests give an initial hydraulic gradient of 5.67, a hydraulic conductivity of 7.14×10-8 cm/s, and an effective diffusion coefficient of 3.12×10-6 cm2/s. The backfill in the dialysis tests is not consolidated and the effective diffusion coefficient is 4.45×10-6 cm2/s. With a bentonite content of 6.02%, the hydraulic conductivity of the backfill decreases by 4 orders of magnitude, while the effective diffusion coefficient only decreases by about 50%, so diffusion will be the dominant contaminant transport process in soil-bentonite cutoff walls.
  • [1]
    BOHNHOFF G, SHACKELFORD C. Consolidation behavior of polymerized bentonite-amended backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 258-268.
    [2]
    YEO S, SHACKELFORD C D, EVANS J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1189-1198.
    [3]
    FILZ G M, HENRY L B, HESLIN G M, et al. Determining hydraulic conductivity of soil-bentonite using the API filter press[J]. Geotechnical Testing Journal, 2001, 24(1): 61-71.
    [4]
    HONG C S, SHACKELFORD C D, MALUSIS M A. Consolidation and hydraulic conductivity of zeolite-amended soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 15-25.
    [5]
    MALUSIS M A, BARBEN E J, EVANS J C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 664-672.
    [6]
    KHANDELWAL A, RABIDEAU A J, SHEN P. Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials[J]. Environmental Science and Technology, 1998, 32(9): 1333-1339.
    [7]
    CASTELBAUM D, SHACKELFORD C D. Hydraulic conductivity of bentonite slurry mixed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1941-1956.
    [8]
    张文杰, 贾文强, 张改革, 等. 黏土-膨润土屏障中氯离子对流扩散规律研究[J]. 岩土工程学报, 2013, 35(11): 2076-2081. (ZHANG Wen-jie, JIA Wen-qiang, ZHANG Gai-ge, et al. Research on advection and dispersion of Cl - in clay-bentonite barriers[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2076-2081. (in Chinese))
    [9]
    KROL M M, ROWE R K. Diffusion of TCE through soil-bentonite slurry walls[J]. Soil and Sediment Contamination, 2004, 13(1): 81-101.
    [10]
    ASTM D6910M—09 Standard test method for marsh funnel viscosity of clay construction slurries[S]. 2009.
    [11]
    ASTM D4380—12 Standard test method for density of bentonitic slurries[S]. 2012.
    [12]
    ASTM C143M—10 Standard test method for slump of hydraulic-cement concrete[S]. 2010.
    [13]
    ASTM D5084—10 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter[S]. 2010.
    [14]
    FETER C W. Contaminant Hydrogeology[M]. Long Grove: Waveland Press, Inc, 1993.
    [15]
    ASTM C1308 Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms[S]. 2008.
    [16]
    PESCATORE C. Improved expressions for modeling diffusive, fractional cumulative leaching from finite-size waste forms[J]. Waste Management, 1990, 10(2): 155-159.
    [17]
    张文杰, 楼晓红, 高佳雯. 高塌落度防渗墙填料扩散系数快速测定的透析试验[J]. 岩土力学, 待刊. (ZHANG Wen-jie, LOU Xiao-hong, GAO Jia-wen, A dialysis test for fast measurement of the diffusion coefficient of high slump backfill[J]. Rock and Soil Mechanics, in press. (in Chinese))
    [18]
    YEO S, SHACKELFORD C D, EVANS J C. Membrane behavior of model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 418-429.
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]ZHANG Jingyu, ZHAN Runhe, DENG Huafeng, LI Jianlin, WANG Wendong, WAN Liangpeng. Repeated shear mechanical properties and constitutive model of jointed sandstone under heat-wet cycles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2148-2157. DOI: 10.11779/CJGE20230652
    [3]WANG Shi-ji, WANG Xiao-qi, LI Da, LI Xian, LIANG Guang-chuan, MUHAMMAD Qayyum Hamka. Evolution of fissures and bivariate-bimodal soil-water characteristic curves of expansive soil under drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 58-63. DOI: 10.11779/CJGE2021S1011
    [4]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [5]CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773-1782. DOI: 10.11779/CJGE202010001
    [6]HUANG Ying-hao, CAI Zheng-yin, ZHU Rui, ZHANG Chen, GUO Wan-li, ZHU Xun, CHEN Yong. Development of centrifuge model test equipment for canals in seasonal frozen areas under cyclic action of wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1181-1188. DOI: 10.11779/CJGE202007001
    [7]CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. DOI: 10.11779/CJGE201908001
    [8]WANG Zhang-qiong, YAN E-chuan. Influence of material composition and structural characteristics of rock on freeze-thaw damage and deterioration of schist[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 86-90. DOI: 10.11779/CJGE2015S2018
    [9]JIANG Ji-wei, XIANG Wei, ZENG Wen, JOACHIM Rohn, YAO Yuan. Water-rock (soil) interaction mechanism of Huangtupo riverside landslide in Three Gorges Reservoir[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1209-1216.
    [10]Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
  • Cited by

    Periodical cited type(7)

    1. 廖洁,刘斯宏,徐思远,樊科伟,于博文. 土工袋技术在乡村公路软基加固中的应用研究. 公路. 2024(06): 52-61 .
    2. 李钒,林国兵,王雅华,樊科伟. 面板对土工袋挡土墙工作性状影响的足尺试验研究. 水电能源科学. 2023(06): 133-136 .
    3. 关帅,孙嘉辉,刘越,王波,黄泽华. 纤维增强复合材料(FRP)锚索性能及其工程应用. 市政技术. 2023(08): 166-179 .
    4. 曹旻昊. 淤泥质袋装土挡墙技术研究和应用分析. 现代交通技术. 2023(05): 93-96 .
    5. 文华,杨青青,吴学宇,付文涛. 稳定固化土重力式挡土墙承载特性研究. 施工技术(中英文). 2022(20): 70-76 .
    6. 黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 .
    7. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return