| Citation: | YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006 |
The Long-term wetting-drying cycles can weaken the engineering characteristics of subgrade fillers, resulting in engineering disasters. It is necessary to study the effects of the wetting-drying cycles on their microstructure and water-retention performance. A series of mercury intrusion tests, scanning electron microscopy tests, pressure plate tests and saturated salt solution vapor equilibrium tests considering the influences of the wetting-drying cycles are carried out on the subgrade filler of the existing ballasted track roads. The experimental results show that during repeated wetting-drying cycles, the soil structure is damaged, and the internal cementitious materials are continuously reduced. The number of micropores and small pores (< 5 μm) in the soil gradually increases, while the peak pore size in the range of mesopores and some large pores (5~30 μm) gradually decreases, and the distribution density gradually increases. After several wetting-drying cycles, the number of microcracks (> 100 μm) gradually increases, leading to cracking of the soil specimens. The wetting-drying cycles have effects on the water-retention characteristics of the soil. When the initial dry density is low, the air-entry value after experiencing one wetting-drying cycle is slightly higher than that without wetting-drying cycles, while the air-entry value of the specimen after three and five wetting-drying cycles continues to decrease.
| [1] |
ZHAO G T, ZOU W L, HAN Z, et al. Evolution of soil-water and shrinkage characteristics of an expansive clay during freeze-thaw and drying-wetting cycles[J]. Cold Regions Science and Technology, 2021, 186: 103275. doi: 10.1016/j.coldregions.2021.103275
|
| [2] |
DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35. doi: 10.1139/t84-003
|
| [3] |
CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[C]// Proc of the Third Inter Conf on Unsaturated Soils, UNSAT, 2002.
|
| [4] |
叶为民, 钱丽鑫, 陈宝, 等. 高压实高庙子膨润土的微观结构特征[J]. 同济大学学报(自然科学版), 2009, 37(1): 31-35.
YE Weimin, QIAN Lixin, CHEN Bao, et al. Characteristics of micro-structure of densely compacted gaomiaozi bentonite[J]. Journal of Tongji University (Natural Science), 2009, 37(1): 31-35. (in Chinese)
|
| [5] |
赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453.
ZHAO Tianyu, WANG Jinfang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University(Science and Technology), 2012, 43(6): 2445-2453. (in Chinese)
|
| [6] |
KONG L W, SAYEM H M, TIAN H H. Influence of drying– wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance(NMR) spin-spin relaxation time (T2) relaxometry[J]. Canadian Geotechnical Journal, 2018, 55(2): 208-216. doi: 10.1139/cgj-2016-0614
|
| [7] |
张俊然, 许强, 孙德安. 多次干湿循环后土-水特征曲线的模拟[J]. 岩土力学, 2014, 35(3): 689-695.
ZHANG Junran, XU Qiang, SUN De'an. Simulation of soil-water characteristic curves during drying and wetting cycles[J]. Rock and Soil Mechanics, 2014, 35(3): 689-695. (in Chinese)
|
| [8] |
YI F C, WANG Z, ZHOU M J. Research on the soil water characteristic curve and prediction of compacted bentonite[J]. Advanced Materials Research, 2012, 518/519/520/521/522/523: 2785-2791.
|
| [9] |
蔡国庆, 刘祎, 徐润泽, 等. 全吸力范围红黏土干湿循环土–水特征曲线[J]. 岩土工程学报, 2019, 41(增刊2): 13-16. doi: 10.11779/CJGE2019S2004
CAI Guoqing, LIU Yi, XU Runze, et al. Experimental investigation for soil-water characteristic curve of red clay in full suction range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 13-16. (in Chinese) doi: 10.11779/CJGE2019S2004
|
| [1] | LIU Jin, CHE Wenyue, HAO Shefeng, MA Xiaofan, YU Yongxiang, WANG Ying, CHEN Zhihao, LI Wanwan, QIAN Wei. Deterioration mechanism of mechanical properties and microstructure in xanthan gum-reinforced soil under wetting-drying cycles based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. DOI: 10.11779/CJGE20230165 |
| [2] | LIANG Zhi-chao, ZHANG Ai-jun, REN Wen-yuan, WANG Yu-guo, HU Jin-fang, HAN Jing-wen. Fitting model for soil water characteristics of lime-improved loess and its microscopic properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 241-246. DOI: 10.11779/CJGE2022S1043 |
| [3] | ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018 |
| [4] | WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013 |
| [5] | ZHANG Long, CHEN Zheng-han, HU Sheng-xia, LIU Zheng-hong, YU Yong-tong, ZHENG Jian-guo. Seepage and water retention characteristics of fill in a construction site in Yan'an[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 183-188. DOI: 10.11779/CJGE2018S1030 |
| [6] | ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015 |
| [7] | MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, TIAN Hui-hui. Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 172-177. DOI: 10.11779/CJGE2015S1033 |
| [8] | DAI Zhang-jun, CHEN Shan-xiong, LUO Hong-ming, LU Ding-jie. Microstructure and characteristics of expansive soil and rock of middle route of South-to-North Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 948-954. |
| [9] | DUAN Hong-fei, JIANG Zhen-quan, ZHU Shu-yun, XIAO Wei-guo, LI Dong-lin. Micro-mechanism of water stability and characteristics of strength softening of rock in deep mines[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1636-1645. |
| [10] | DENG Jin, WANG Lanmin, ZHANG Zhenzhong. Microstructure characteristics and seismic subsidence of loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 542-548. |
| 1. |
胡殿俊, 刘瑾, 马晓凡, 汪静怡, 吴雨晗. 干湿循环下加筋黏土防渗层抗裂特性研究. 建筑材料学报.
|