• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773-1782. DOI: 10.11779/CJGE202010001
Citation: CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773-1782. DOI: 10.11779/CJGE202010001

Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw

More Information
  • Received Date: January 09, 2020
  • Available Online: December 07, 2022
  • The complex action of coupling moisture and heat in seasonally frozen soil regions is the inducement of deterioration and instability of hydraulic structures such as canals. A set of centrifugal model test equipment for canal under the cyclic action of coupling wetting-drying and freeze-thaw in seasonally frozen soil regions is developed, which realizes the simulation of cyclic action of coupling moisture and heat during the process of wetting-drying and freeze-thaw in the centrifugal field. The centrifugal model tests are conducted to investigate the deterioration process of the canal in north Xinjiang under the cyclic action of coupling wetting-drying and freeze-thaw. The tests results show that the cyclic action of coupling wetting-drying and freeze-thaw makes the cracks of model canal expand, and eventually produces a deep transverse tension crack across the top surface of the canal, which leads to that the model canal has a tendency of instability from the tension cracks at the canal top. In this process, the infiltration depth of canal water increases and the infiltration volume decreases. The freezing rate and thawing rate show an upward trend. In addition, the final normal deformation at the canal slope is the largest, followed by that at the top of the canal and that at the bottom of the canal. The equipment and method adopted in the centrifugal model tests are applicable to the disaster researches on canals in cold regions.
  • [1]
    邓铭江. 新疆水资源及可持续利用[M]. 北京: 中国水利水电出版社, 2005.

    DENG Ming-jiang. Water Resources and Sustainable Utilization in Xinjiang Uygur Autonomous Region[M]. Beijing: China Water & Power Press, 2005. (in Chinese)
    [2]
    蔡正银, 黄英豪. 咸寒区渠道冻害评估与处治技术[M]. 北京: 科学出版社, 2015.

    CAI Zheng-yin, HUANG Ying-hao. Evaluation and Treatment Technology of Frost Damage in Canals in Saline and Cold Regions[M]. Beijing: Science Press, 2015. (in Chinese)
    [3]
    RAO S M, REDDY B V V, MUTTHARAM M. The impact of cyclic wet and dry on the swelling behaviour of stabilized expansive soils[J]. Engineering Geology, 2001, 60(1): 223-233.
    [4]
    许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2): 167-174. doi: 10.16285/j.rsm.2016.S2.020

    XU Lei, LIU Si-hong, LU Yang, et al. Physico-mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(S2): 167-174. (in Chinese) doi: 10.16285/j.rsm.2016.S2.020
    [5]
    詹良通, 吴宏伟, 包承纲, 等. 降雨入渗条件下非饱和膨胀土边坡原位监测[J]. 岩土力学, 2003, 24(2): 151-158. doi: 10.3969/j.issn.1000-7598.2003.02.034

    ZHAN Liang-tong, WU Hong-wei, BAO Cheng-gang, et al. Artificial rainfall infiltration tests on a well-instrumented unsaturated expansive soil slope[J]. Rock and Soil Mechanics, 2003, 24(2): 151-158. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.02.034
    [6]
    WANG R, ZHANG G, ZHANG J M. Centrifuge modelling of clay slope with montmorillonite weak layer under rainfall conditions[J]. Applied Clay Science, 2010, 50(3): 386-394. doi: 10.1016/j.clay.2010.09.002
    [7]
    程永辉, 程展林, 张元斌. 降雨条件下膨胀土边坡失稳机理的离心模型试验研究[J]. 岩土工程学报, 2011, 33(增刊1): 416-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1079.htm

    CHENG Yong-hui, CHENG Zhan-lin, ZHANG Yuan-bin. Centrifugal model tests on expansive soil slope under rainfall[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 416-421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1079.htm
    [8]
    詹良通, 刘小川, 泰培, 等. 降雨诱发粉土边坡失稳的离心模型试验及雨强-历时警戒曲线的验证[J]. 岩土工程学报, 2014, 36(10): 1784-1790. doi: 10.11779/CJGE201410004

    ZHAN Liang-tong, LIU Xiao-chuan, TAI Pei, et al. Centrifuge modelling of rainfall-induced slope failure in silty soils and validation of intensity-duration curves[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1784-1790. (in Chinese) doi: 10.11779/CJGE201410004
    [9]
    ZHANG G, YUN H, WANG L. Behaviour and mechanism of failure process of soil slopes[J]. Environmental Earth Sciences, 2015, 73(4): 1-13.
    [10]
    杨春宝, 朱斌, 孔令刚, 等. 水位变化诱发粉土边坡失稳离心模型试验[J]. 岩土工程学报, 2013, 35(7): 1261-1271. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307013.htm

    YANG Chun-bao, ZHU Bin, KONG Ling-gang, et al. Centrifugal model tests on failure of silty slopes induced by change of water level[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1261-1271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307013.htm
    [11]
    陈湘生, 濮家骝, 罗小刚, 等. 土壤冻胀离心模拟试验[J]. 煤炭学报, 1999, 24(6): 615-619. doi: 10.3321/j.issn:0253-9993.1999.06.013

    CHEN Xiang-sheng, PU Jia-liu, LUO Xiao-gang, et al. Centrifuge modelling tests of soil freezing heave[J]. Journal of China Coal society, 1999, 24(6): 615-619. (in Chinese) doi: 10.3321/j.issn:0253-9993.1999.06.013
    [12]
    YANG D, GOODINGS D J. Climatic soil freezing modeled in centrifuge[J]. Journal of Geotechnical and Geoenviron- mental Engineering, 1998, 124(12): 1186-1194. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1186)
    [13]
    黄英豪, 蔡正银, 张晨, 等. 渠道冻胀离心模型试验设备的研制[J]. 岩土工程学报, 2015, 37(4): 615-621. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504007.htm

    HUANG Ying-hao, CAI Zheng-yin, ZHANG Chen, et al. Development of centrifugal model test facility for frost-heave of channels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 615-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504007.htm
    [14]
    ZHOU J, TANG Y Q. Centrifuge experimental study of thaw settlement characteristics of mucky clay after artifical ground freezing[J]. Engineering Geology, 2015, 190: 98-108. doi: 10.1016/j.enggeo.2015.03.002
    [15]
    张晨, 蔡正银, 黄英豪, 等. 输水渠道冻胀离心模拟试验[J]. 岩土工程学报, 2016, 38(1): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601013.htm

    ZHANG Chen, CAI Zheng-yin, HUANG Ying-hao, et al. Centrifuge modelling of frost-heave of canals[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601013.htm
    [16]
    张晨. 渠道冻害过程模拟技术研究[D]. 南京: 南京水利科学研究院, 2016.

    ZHANG Chen. Simulation Technology of Frost Damage on Water Delivery Canal[D]. Nanjing: Nanjing Hydraulic Research Institute, 2016. (in Chinese)
    [17]
    蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(8): 1381-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908002.htm

    CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wet-dry and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908002.htm
    [18]
    唐少容, 王红雨, 潘鑫, 等. U形混凝土衬砌结构冻胀性能离心模型试验研究[J]. 农业工程学报, 2019, 35(1): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201901020.htm

    TANG Shao-rong, WANG Hong-yu, PAN Xin, et al. Frost heave performance of U-shaped canal concrete lining based on centrifuge model test[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 157-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201901020.htm
    [19]
    LIN L C, BENSON C H. Effect of wet-dry cycling on swelling and hydraulic conductivity of GCLs[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(1): 40-49.
    [20]
    王国利, 陈生水, 徐光明. 干湿循环下膨胀土边坡稳定性的离心模型试验[J]. 水利水运工程学报, 2005(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200504001.htm

    WANG Guo-li, CHEN Sheng-shui, XU Guang-ming. Centrifuge model test on stability of expansive soil slope under alternation between dry and wet[J]. Hydro-Science and Engineering, 2005(4): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200504001.htm
    [21]
    CHEN T L, ZHOU C, WANG G L, et al. Centrifuge model test on unsaturated expansive soil slopes with cyclic wet-dry and inundation at the slope toe[J]. International Journal of Civil Engineering, 2018, 18(10): 1341-1360.
    [22]
    张晨, 蔡正银, 徐光明, 等. 冻土离心模型试验相似准则分析[J]. 岩土力学, 2018, 39(4): 1236-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804013.htm

    ZHANG Chen, CAI Zheng-yin, XU Guang-ming, et al. Dimensional analysis of centrifugal modeling of frozen soil[J]. Rock and Soil Mechanics, 2018, 39(4): 1236-1244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804013.htm
    [23]
    KRISHNAIAH S, SINGH D N. Determination of thermal properties of soils in a geotechnical centrifuge[J]. Journal of Testing and Evaluation, 2006, 34(4): 319-326.
    [24]
    曾召田, 吕海波, 赵艳林, 等. 膨胀土干湿循环效应及其对边坡稳定性的影响[J]. 工程地质学报, 2012, 20(6): 934-939. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm

    ZENG Zhao-tian, LÜ Hai-bo, ZHAO Yan-lin, et al. Wetting-drying effect of expansive soils and its influence on slope stability[J]. Journal of Engineering Geology, 2012, 20(6): 934-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm
    [25]
    蔡正银, 陈皓, 黄英豪, 等. 考虑干湿循环作用的膨胀土渠道边坡破坏机理研究[J]. 岩土工程学报, 2019, 41(11): 1977-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm

    CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, et al. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977-1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911002.htm
    [26]
    齐吉琳, 马巍. 冻融作用对超固结土强度的影响[J]. 岩土工程学报, 2006, 28(12): 2082-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200612006.htm

    QI Ji-lin, MA Wei. Influence of freezing-thawing on strength of overconsolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2082-2086. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200612006.htm
    [27]
    胡再强, 梁志超, 吴传意, 等. 冻融循环作用下石灰改性黄土的力学特性试验研究[J]. 土木工程学报, 2019, 52(增刊1): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1027.htm

    HU Zai-qiang, LIANG Zhi-chao, WU Chuan-yi, et al. Experimental study on mechanical properties of lime modified loess under freeze-thaw cycle[J]. China Civil Engineering Journal, 2019, 52(S1): 211-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1027.htm
    [28]
    叶万军, 杨更社, 彭建兵, 等. 冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201025.htm

    YE Wan-jun, YANG Geng-she, PENG Jian-bing, et al. Test research on mechanism of freezing and thawing cycle resulting in loess slope spalling hazards in Luochuan[J]. Chinese Journal of Geotechnical Engineering, 2012, 31(1): 199-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201201025.htm
  • Related Articles

    [1]Analytical solution for 1-D thermo-consolidation process of semi-infinite saturated soil using similarity transformation method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240206
    [2]GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555
    [3]LI Lin-zhong, QIN Ai-fang, JIANG Liang-hua. Semi-analytical solution to one-dimensional consolidation of double-layered unsaturated ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 315-323. DOI: 10.11779/CJGE202202013
    [4]NIU Jia-jun, LING Dao-sheng, WANG Xiu-kai, SHAN Zhen-dong, ZHAO Yun. Exact solutions for one-dimensional thermal consolidation of single-layer saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1715-1723. DOI: 10.11779/CJGE201909016
    [5]YANG Tao, LI Chao, RUAN Yi-zhou. Analytical solution for consolidation of a composite ground with impervious multi-long-short piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2195-2202. DOI: 10.11779/CJGE201712007
    [6]JIANG Ji-an, CHEN Hai-ying, CHEN Yue, YE Jia-wen. Analytical solutions to drainage consolidation considering vacuum loss in prefabricated vertical drain[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 404-418. DOI: 10.11779/CJGE201603003
    [7]GUO Xiao, XIE Kang-he, Lü Wen-xiao, DENG Yue-bao. Analytical solutions for consolidation by vertical drains with variation of well resistance with depth and time[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 996-1001. DOI: 10.11779/CJGE201506004
    [8]GUO Biao, GONG Xiao-nan, LU Meng-meng, ZHANG Fa-chun, FANG Rui. Analytical solution for consolidation of vertical drains by vacuum-surcharge preloading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1045-1054.
    [9]Li Binghe, Xie Kanghe, Ying Hongwei, Zeng Guoxi. Semi analytical solution of one dimensional non linear consolidation of soft clay under time dependent loading[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 32-37.
    [10]Huang Chuanzhi, Xiao Yuan. Analytic Solution of a Two Dimensional Consolidation Problem[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 47-54.

Catalog

    Article views (347) PDF downloads (284) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return