• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
Citation: XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012

Mechanism of cemented soil modified by aliphatic ionic soil stabilizer

More Information
  • Received Date: October 23, 2018
  • Published Date: September 24, 2019
  • The relatively low early strength and significant cracks are the common issues for the cementitious materials-stabilized soil (cemented soil). To remedy its defects, novel ionic soil stabilizers (ISS) with dosages from 1/300 to 1/50 of water content volume of the cemented soil are applied. Through the tests on unconfined compressive strength and volume chemical shrinkage, the modification feasibility of ISS application is verified. Through the characterization and analyses of the surface adsorption behaviors, phase evolution and micro-structure, the modification mechanisms of ISS on cemented soil are systematically studied. The results indicate that the ISS molecules adsorb on the compositions of cemented soil selectively. After the ISS addition, the system dispersion is enhanced, the water combination capacity of soil minerals is reduced, thus accelerating the formation of hydration products, benefiting the pore distribution and increasing the volume chemical shrinkage. The optimum dosage of this study is 1/150, and the excessive addition will retard the modification effects but reduce the chemical shrinkage. The results can be used as a reference for the modification of cemented soil with ISS.
  • [1]
    HORPIBULSUK S, RACHAN R, CHINKULKIJNIWAT A, et al.Analysis of strength development in cement-stabilized silty clay from microstructural considerations[J]. Construction & Building Materials, 2010, 24(10): 2011-2021.
    [2]
    SONG D, CHEN B.Extended energy accounting for energy consumption and co2, emissions of cement industry—a basic framework[J]. Energy Procedia, 2016, 88: 305-308.
    [3]
    易耀林, 李晨, 孙川, 等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1820-1826.
    (YI Yao-lin, LI Chen, SUN Chuan, et al.Test on alkali-activated ground granulated blast-furnace slag (GGBS) for Lianyungang soft soil stabilization[J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(9): 1820-1826. (in Chinese))
    [4]
    JAFER H, ATHERTON W, SADIQUE M, et al.Stabilisation of soft soil using binary blending of high calcium fly ash and palm oil fuel ash[J]. Applied Clay Science, 2017, 152: 323-332.
    [5]
    GÖKTEPE A B, SEZER A, SEZER G İ, et al. Classification of time-dependent unconfined strength of fly ash treated clay[J]. Construction & Building Materials, 2008, 22(4): 675-683.
    [6]
    PHETCHUAY C, HORPIBULSUK S, SUKSIRIPATTANAPONG C, et al.Calcium carbide residue: alkaline activator for clay-fly ash geopolymer[J]. Construction & Building Materials, 2014(69): 285-294.
    [7]
    任葳葳. 高分子材料改性淤泥质土及其机理研究[D]. 重庆:重庆大学, 2015.
    (REN Wei-wei.Study on modification and mechanism of silt solidified by polymer material[D]. Chongqing: Chongqing University, 2015. (in Chinese))
    [8]
    刘清秉, 项伟, 崔德山. 离子土固化剂对膨胀土结合水影响机制研究[J]. 岩土工程学报, 2012, 34(10): 1887-1895.
    (LIU Qing-bing, XIANG Wei, CUI De-shan.Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. (in Chinese))
    [9]
    崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
    (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese))
    [10]
    刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290.
    (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improved expansive soil[J]. Rock & Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
    [11]
    SUN J, SHI H, QIAN B, et al.Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration[J]. Construction and Building Materials, 2017, 140: 282-292.
    [12]
    唐胜程, 王伟山, 景希玮, 等. PCE结构对硅酸三钙结构和形貌的影响[J]. 建筑材料学报, 2016, 19(6): 1073-1076.
    (TANG Sheng-cheng, WANG Wei-shan, JING Xi-wei, et al.Effect of PCE structure on the structure and morphology of tricalcium silicate[J]. Journal of Building Materials, 2016, 19(6): 1073-1076. (in Chinese))
    [13]
    THOMAS J J, GHAZIZADEH S, MASOERO E.Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of β -dicalcium silicate (C2S)[J]. Cement & Concrete Research, 2017, 100: 322-328.
    [14]
    FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous & Mesoporous Materials, 2005, 86(1): 207-214.
    [15]
    翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010.
    (WENG Shi-fu.Analysis of fourier transform infrared spectroscopy[M]. Beijing: Chemical Industry Press, 2010. (in Chinese))
    [16]
    XU F, WEI H, QIAN W, et al.Composite alkaline activator on cemented soil: multiple tests and mechanism analyses[J]. Construction and Building Materials, 2018, 188: 433-443.
    [17]
    JIANG Y, ZHANG S, LIU X.Early calcium monocar- boaluminate hydrate formation in cement paste: effect of polycarboxylate type admixture[J]. Journal of Southeast University (English Edition), 2010, 26: 574-577.
    [18]
    PRINCE W, EDWARDS M.Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste[J]. Cement & Concrete Research, 2002, 32(1): 79-85.
    [19]
    RAMACHANDRAN V S, PAROLI R, BEAUDOIN J, et al.Handbook of thermal analysis of construction materials[M]. New York: William Andrew Publishing, 2002.
    [20]
    VITALE E, DENEELE D, PARIS M, et al.Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays[J]. Applied Clay Science, 2017, 141: 36-45.
    [21]
    ZENG Q, LI K, et al.Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes[J]. Construction & Building Materials, 2012, 27(1): 560-569.
    [22]
    METHA P K, MONTERO P J.Concrete: microstructure, properties and materials[M]. London: McGraw-Hill, 2006.
    [23]
    TAN H, GU B, MA B, et al.Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite[J]. Applied Clay Science, 2016, 129: 40-46.
    [24]
    AITAKBOUR R, BOUSTINGORRY P, LEROUX F, et al.Adsorption of poly carboxylate poly (ethylene glycol) (PCP) esters on montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure[J]. Journal of Colloid & Interface Science, 2015, 437: 227-234.
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050
    [3]ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
    [4]ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. DOI: 10.11779/CJGE201412007
    [5]WANG Shu-guang. Deformation control of excavation engineering with complicated surroundings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 474-477.
    [6]LIU Huan-cun, LI Liang-jie, WANG Cheng-liang, WEI Hai-tao. Design and deformation control of excavation support project close to a subway station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 654-658.
    [7]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [8]LI Zhi-wei, HOU Wei-sheng, YE Ai-li, CHEN Ke-shuai, TANG Yong. Displacement control effect of passive zone improvement at excavation section of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 621-627.
    [9]SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao. Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 576-580.
    [10]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
  • Cited by

    Periodical cited type(24)

    1. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 陈强,秦子鹏,蒋宁,周林真,陈增然,秦玉禹,李桃,彭杨. 降雨和水位变化条件下排涝河道岸坡稳定性的数值研究. 水资源与水工程学报. 2024(01): 186-196 .
    4. 张德辉,刘伟明,冯善周,郝献省. 膨胀土边坡失稳与防治研究. 科技创新与生产力. 2024(04): 134-136+140 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    7. 王骜洵,蒋函静,许帅,徐永福. 降雨入渗下非饱和土边坡浅层破坏机制分析. 中南大学学报(自然科学版). 2024(07): 2701-2711 .
    8. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    9. 韦秉旭,曾警,程聪,陈楚方,王起. 基于流固耦合的加筋膨胀土边坡稳定性分析. 公路. 2024(09): 8-15 .
    10. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    11. 白玉霞,常顺,肖衡林,李丽华,何俊,邱季,周文卓,邓永锋. 膨胀土生态治理研究进展. 岩土工程学报. 2024(S2): 60-66+176 . 本站查看
    12. 赵二平,唐加林,李志坤,张聪. 不同初始含水率下广西膨胀土膨胀变形规律及劣化机理研究. 人民珠江. 2024(11): 115-123 .
    13. 陈敏. 机场滑坡与桩锚结构支护方案研究. 江西建材. 2024(12): 227-228+235 .
    14. 刘振北. 膨胀土滑坡基本特征分析及防治措施研究. 江西建材. 2023(02): 114-115+118 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴新华,闫林芳. 滑坡防治措施设计及运营效果评价. 江西建材. 2023(04): 130-132 .
    17. 欧阳荣,吴永东. 超高边坡防治方案设计及运营效果分析. 江西建材. 2023(07): 96-97+100 .
    18. 邱兵,白慧林. 锚杆挡墙加固高陡土质边坡设计探讨——以岗白路K8+290~K8+400段路基边坡为例. 科技和产业. 2023(21): 221-226 .
    19. 周钊. 弱膨胀土路基固坡防护施工研究. 交通世界. 2023(31): 52-54 .
    20. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    21. 李晶,梁力川,邵雪停,季军远,王玉. 考虑降雨和地震作用下的铁路边坡稳定性分析. 山东农业大学学报(自然科学版). 2023(06): 887-896 .
    22. 凌时光,张锐,兰天. 膨胀土强度特性的研究进展与探究. 长沙理工大学学报(自然科学版). 2023(06): 1-16 .
    23. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .
    24. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(3)

Catalog

    Article views (279) PDF downloads (216) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return