• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
Citation: HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013

Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer

More Information
  • Received Date: November 06, 2017
  • Published Date: January 24, 2019
  • The natural montmorillonite is modified by the ionic soil stabilizer (ISS) with different concentrations and the isothermal water vapor adsorption tests are conducted for both the raw and modified soils under the relative humidity (P/P0) ranging from 0.01 to 0.95. The evolution of the dominated factors in the process of hydration of montmorillonite is interpreted by combining the analyses of variation of d001 with P/P0, water retention velocity curves and results of infrared spectroscopy (IR). Finally, the boundary values of P/P0 in hydration sequences are proposed, and the water retention equations are derived through hydration energy of cations and surface of minerals, respectively. The results show that for the calcium montmorillonite, the exchangeable cations interact with water molecules to form monolayer of hydration shell at the range of 0<P/P0<0.15~0.2 firstly and then form bilayer at 0.15~0.2<P/P0<0.45~0.5, followed by hydration on basal surface of crystal layer at 0.45~0.5<P/P0<0.8~0.9 to form the integrated bilayer water film. The water retention capacity is dominated by the hydratability of interlamellar cations merely at extremely high suction range (ψ>200 MPa), and mainly influenced by the Van der Waals force between basal surface and water molecules when suction is lower (15<ψ<200 MPa). At a certain suction range, ISS weakens the water retention capacity of montmorillonite by changing the specific physic-chemical parameters. The derived water retention equations can accurately predict the test results and also provide a quantitative insight into the mechanism of action by ISS.
  • [1]
    HENSEN E J M, SMIT B. Why clays swell[J]. Journal of Physical Chemistry B, 2002, 106(49): 12664-12667.
    [2]
    贾景超. 膨胀土膨胀机理及细观膨胀模型研究[D]. 大连: 大连理工大学, 2010.
    (JIA Jing-chao.Study on the swelling mechanism and mesomechanical swelling model of expansive soil[D]. Dalian: Dalian University of Technology, 2010. (in Chinese))
    [3]
    DEVINEAU K, BIHANNIC I, MICHOT L, et al.In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite[J]. Applied Clay Science, 2006, 31(1/2): 76-84.
    [4]
    LAIRD D A.Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.
    [5]
    FABRICE S, OLIVIER B, JEANMARC D, et al.Determination of the driving force for the hydration of the swelling clays from computation of the hydration energy of the interlayer cations and the clay layer[J]. J Phys Chem C, 2008, 111(35): 13170-13176.
    [6]
    KELLEY W P, JENNY H, BROWN S M.Hydration of minerals and soil colloids in relation to crystal structure[J]. Soil Science, 1936, 41(4): 259-274.
    [7]
    库里契茨基. 土中结合水译文集[M]. 李生林, 译. 北京: 地质出版社, 1982.
    (CURRYCHISIKI. The soil bound water[M]. LI Sheng-lin, tran. Beijing: Geological Press, 1982. (in Chinese))
    [8]
    王平全. 黏土表面结合水定量分析及水合机制研究[D].成都: 西南石油学院, 2001.
    (WANG Ping-quan.The study for quantitative analysis of water on clays and their hydration mechanism[D]. Chengdu: Southwest Petroleum Institute, 2001. (in Chinese))
    [9]
    CASES J M, BEREND I, BESSON G, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonit 1: the sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
    [10]
    CASES J M. BEREND I, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 3: the Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms[J]. Clays & Clay Minerals, 1997, 45(1): 8-22.
    [11]
    BEREND I, CASES J M, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites 2: the Li+, Na+, K+, Rb+and Cs+-exchanged forms[J]. Clays & Clay Minerals, 1995, 43(3): 324-336.
    [12]
    DUECK A.Laboratory results from hydro-mechanical tests on a water unsaturated bentonite[J]. Engineering Geology, 2008, 97(1/2): 15-24.
    [13]
    BACHMANN J, VAN D P R R. A review on recent developments in soil water retention theory: interfacial tension and temperature effects[J]. Journal of Plant Nutrition & Soil Science, 2002, 165(4): 468-478.
    [14]
    PETERSEN L W, MOLDRUP P, JACOBSEN O H, et al.Relations between specific surface area and soil physical and chemical properties[J]. Soil Science, 1996, 161(1): 9-21.
    [15]
    FRYDMAN S, BAKER R.Theoretical soil-water characteristic curves based on adsorption, cavitation, and a double porosity model[J]. International Journal of Geomechanics, 2009, 9(6): 250-257.
    [16]
    SILVA O, GRIFOLL J.A soil-water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 43(11): 398-408.
    [17]
    HATCH C D, WIESE J S, CRANE C C, et al.Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(3): 1790.
    [18]
    WOODRUFF W, REVIL A.CEC-normalized clay-water sorption isotherm[J]. Water Resources Research, 2011, 47: W11502.
    [19]
    REVIL A, LU N.Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
    [20]
    MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [21]
    DIOS C G, HUERTAS F J, ROMERO T E, et al.Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption[J]. Journal of Colloid & Interface Science, 1997, 185(2): 343.
    [22]
    陈善雄, 孔令伟, 郭爱国. 膨胀土工程特性及其石灰改性试验研究[J]. 岩土力学, 2002, 23(增刊1): 9-12.
    (CHEN Shan-xiong, KONG Ling-wei, GUO Ai-guo.Experimental research on engineering properties of expansive soil and lime stabilized soil[J]. Rock and Soil Mechanics, 2002, 23(S1): 9-12. (in Chinese))
    [23]
    AL-MUKHTAR M, LASLEDJ A, ALCOVER J F.Behaviour and mineralogy changes in lime-treated expansive soil at 50℃[J]. Applied Clay Science, 2010, 50(2): 199-203.
    [24]
    CHEW S H, KAMRUZZAMAN A H M, LEE F H. Physicochemical and engineering behavior of cement treated clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2004, 130(7): 696-706.
    [25]
    RAO S M, REDDY B V V, MUTTHARAM M. The impact of cyclic wetting and drying on the swelling behaviour of stabilized expansive soils[J]. Engineering Geology, 2001, 60(1/2/3/4): 223-233.
    [26]
    YAZDANDOUST F, YASROBI S S.Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays[J]. Applied Clay Science, 2010, 50(4): 461-468.
    [27]
    SCHOLEN D E.Stabilizer mechanisms in nonstandard stabilizers[C]// 6th International Conference on Low Volume Roads. Minneapolis, 1995.
    [28]
    PETRY T, DAS B.Evaluation of chemical modifiers and stabilizers for chemically active soils: clays[J]. Transportation Research Record Journal of the Transportation Research Board, 2001, 1757(1): 43-49.
    [29]
    RAUCH A, HARMON J, KATZ L, et al.Measured effects of liquid soil stabilizers on engineering properties of clay[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1787(1): 33-41.
    [30]
    汪益敏, 张丽娟, 苏卫国, 等. ISS加固土的试验研究[J]. 公路, 2001(7): 39-43.
    (WANG Yi-min, ZHANG Li-juan, SU Wei-guo, et al.Experimental study of stabilizing soil by adapting ISS[J]. Highway, 2001(7): 39-43. (in Chinese))
    [31]
    刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290.
    (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
    [32]
    KATZ L, RAUCH A, LILJESTRAND H, et al.Mechanisms of soil stabilization with liquid ionic stabilizer[J]. Transportation Research Record, 2001, 1757(1): 50-57.
    [33]
    刘清秉, 项伟, 崔德山, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 33(4): 648-654.
    (LIU Qing-bing, XIANG Wei, CUI De-shan, et al.Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648-654. (in Chinese))
    [34]
    雷雯. 新型土壤固化剂的制备及应用[D]. 武汉: 中国地质大学(武汉), 2014.
    (LEI Wen. Development and application of a new ionic soil stabilizer[D]. Wuhan: China University of Geosciences(Wuhan), 2014. (in Chinese))
    [35]
    KHORSHIDI M, LU N.Intrinsic relation between soil water retention and cation exchange capacity[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(4): 4016119.
    [36]
    ISRAELACHVILI J N.Intermolecular and surface forces[M]. 3rd ed. Amsterdam: Academic Press, 1992: 59-65.
    [37]
    FERRAGE E, LANSON E, SAKHAROV B, et al.Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
    [38]
    CHIPERA S J, CAREY J W, BISH D L.Controlled-humidity XRD analyses: application to the study of smectite expansion/contraction[J]. Advances in X-Ray Analysis, 1997, 39: 713-722.
    [39]
    须藤俊男. 黏土矿物学[M]. 严寿鹤, 等, 译. 北京: 地质出版社, 1981.
    (SUDO T.Clay minerals[M]. YAN Shou-he, et al, trans. Beijing: Geological Press, 1981. (in Chinese))
    [40]
    崔德山. 离子土壤固化剂对武汉红色黏土结合水作用机理研究[D]. 武汉: 中国地质大学 (武汉), 2009.
    (CUI De-shan. Research on the reaction mechanism of adsorbed water in red clay of Wuhan with ionic soil stabilizer[D]. Wuhan: China University of Geosciences (Wuhan), 2009. (in Chinese))
    [41]
    NITAO J J, BEAR J.Potentials and their role in transport in porous media[J]. Water Resources Research, 1996, 32(2): 225-250.
    [42]
    MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite: II effect of exchangeable ions and lattice swelling as measured by x-ray diffraction[J]. Journal of the American Chemical Society, 1952, 74(6).
    [43]
    AKIN I D.Clay surface properties by water vapor sorption methods[D]. Madison: University of Wisconsin-Madison, 2014.
    [44]
    FORESTIER L L, MULLER F, VILLIERAS F, et al.Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue[J]. Applied Clay Science, 2010, 48(1): 18-25.
    [45]
    KEREN R.Water vapor isotherms and heat of immersion of na/ca-montmorillonite systems: i homoionic clay[J]. Clays & Clay Minerals, 1975, 23(3): 193-200.
    [46]
    HAMAKER H C.The London—van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072.
    [47]
    TULLER M, OR D, DUDLEY L M.Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores[J]. Water Resources Research, 1999, 35(7): 1949-1964.
    [48]
    TULLER M, OR D.Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(W09403): 319-335.
  • Cited by

    Periodical cited type(24)

    1. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 陈强,秦子鹏,蒋宁,周林真,陈增然,秦玉禹,李桃,彭杨. 降雨和水位变化条件下排涝河道岸坡稳定性的数值研究. 水资源与水工程学报. 2024(01): 186-196 .
    4. 张德辉,刘伟明,冯善周,郝献省. 膨胀土边坡失稳与防治研究. 科技创新与生产力. 2024(04): 134-136+140 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    7. 王骜洵,蒋函静,许帅,徐永福. 降雨入渗下非饱和土边坡浅层破坏机制分析. 中南大学学报(自然科学版). 2024(07): 2701-2711 .
    8. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    9. 韦秉旭,曾警,程聪,陈楚方,王起. 基于流固耦合的加筋膨胀土边坡稳定性分析. 公路. 2024(09): 8-15 .
    10. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    11. 白玉霞,常顺,肖衡林,李丽华,何俊,邱季,周文卓,邓永锋. 膨胀土生态治理研究进展. 岩土工程学报. 2024(S2): 60-66+176 . 本站查看
    12. 赵二平,唐加林,李志坤,张聪. 不同初始含水率下广西膨胀土膨胀变形规律及劣化机理研究. 人民珠江. 2024(11): 115-123 .
    13. 陈敏. 机场滑坡与桩锚结构支护方案研究. 江西建材. 2024(12): 227-228+235 .
    14. 刘振北. 膨胀土滑坡基本特征分析及防治措施研究. 江西建材. 2023(02): 114-115+118 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴新华,闫林芳. 滑坡防治措施设计及运营效果评价. 江西建材. 2023(04): 130-132 .
    17. 欧阳荣,吴永东. 超高边坡防治方案设计及运营效果分析. 江西建材. 2023(07): 96-97+100 .
    18. 邱兵,白慧林. 锚杆挡墙加固高陡土质边坡设计探讨——以岗白路K8+290~K8+400段路基边坡为例. 科技和产业. 2023(21): 221-226 .
    19. 周钊. 弱膨胀土路基固坡防护施工研究. 交通世界. 2023(31): 52-54 .
    20. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    21. 李晶,梁力川,邵雪停,季军远,王玉. 考虑降雨和地震作用下的铁路边坡稳定性分析. 山东农业大学学报(自然科学版). 2023(06): 887-896 .
    22. 凌时光,张锐,兰天. 膨胀土强度特性的研究进展与探究. 长沙理工大学学报(自然科学版). 2023(06): 1-16 .
    23. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .
    24. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(3)

Catalog

    Article views (297) PDF downloads (181) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return