• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Ri-qing, JU Lu-ying, YU Jian-lin, JIANG Jia-qi, DING Pan. Egg-shaped bounding surface model for saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2170-2179. DOI: 10.11779/CJGE202012002
Citation: XU Ri-qing, JU Lu-ying, YU Jian-lin, JIANG Jia-qi, DING Pan. Egg-shaped bounding surface model for saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2170-2179. DOI: 10.11779/CJGE202012002

Egg-shaped bounding surface model for saturated soft clay

More Information
  • Received Date: February 19, 2020
  • Available Online: December 05, 2022
  • In order to describe the dynamic characteristics of saturated soft clay under cyclic loading, an egg-shaped one-sided bounding surface model is established. First, by introducing the egg-shaped bounding surface, the model overcomes the defect that the direction of the plastic strain increment at the corner of the Cambridge-type bounding surface is not clear, and degrades the egg-shaped bounding surface into different types including the Cambridge form and the elliptical form, which reflects the universality of the model. Next, the model adopts the associated flow rule applicable to saturated soft clay, uses plastic volumetric strain as the internal variable in the isotropic hardening process, and uses the general isotropic hardening rule and the mapping rule of the moving mapping center to accurately describe the soil stress induced anisotropy and plasticity during unloading. Then, the method for determining the model parameters is clarified, and the influence of each model parameter on the dynamic characteristics of saturated soft clay is explained through parameter analysis. Finally, using the one-way cyclic triaxial tests on kaolin clay under undrained condition and the isotropic consolidated tests on Itsukaichi marine clay under undrained condition, the simulated values are compared with the measured ones. The results show that the simulated results agree well with the test ones, and the proposed model can reasonably describe the characteristics of saturated soft clay under undrained cyclic loading and static shearing loading.
  • [1]
    孔亮, 郑颖人, 王燕昌. 土体动本构模型研究评述[J]. 宁夏大学学报(自然版), 2001, 22(1): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-NXDZ200101005.htm

    KONG Liang, ZHENG Ying-ren, WANG Yan-chang. Review of research on soil constitutive models[J]. Journal of Ningxia University (Natural Edition), 2001, 22(1): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NXDZ200101005.htm
    [2]
    DAFALIAS Y F, POPOV E P. A model of non-linearly hardening materials for complex loading[J]. ActaMechanica, 1975, 21(3): 173-192.
    [3]
    KRIEG R D. A practical two surface plasticity theory[J]. Journal of Applied Mechanics, ASME, 1975, 42(3): 641-646. doi: 10.1115/1.3423656
    [4]
    LI T, MEISSNER H. Two-surface plasticity model for cyclic undrained behavior of clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 613-626. doi: 10.1061/(ASCE)1090-0241(2002)128:7(613)
    [5]
    李涛, MEISSNER H. 循环荷载作用下饱和黏性土的弹塑性双面模型[J]. 土木工程学报, 2006, 39(1): 92-97. doi: 10.3321/j.issn:1000-131X.2006.01.019

    LI Tao, MEISSNER H. Elastoplastic double-sided model of saturated clay under cyclic loading[J]. Journal of Civil Engineering, 2006, 39(1): 92-97. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.01.019
    [6]
    李潇旋, 李涛, 李舰, 等. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004005.htm

    LI Xiao-xuan, LI Tao, LI Jian, et al. Elastoplastic double-sided model of unsaturated structured clay under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(4): 2-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004005.htm
    [7]
    DAFALIAS Y F, HEMNANN L R. Bounding surface formulation of soil plasticity[C]//Soil Mechanics-Transient and Cyclic Loads, 1980, New York.
    [8]
    黄茂松, 刘明, 柳艳华. 循环荷载下软黏土的各向异性边界面模型[J]. 水利学报, 2009, 40(2): 188-193. doi: 10.3321/j.issn:0559-9350.2009.02.009

    HUANG Mao-song, LIU Ming, LIU Yan-hua. Anisotropic boundary surface model of soft clay under cyclic loading[J]. Journal of Hydraulic Engineering, 2009, 40(2): 188-193. (in Chinese) doi: 10.3321/j.issn:0559-9350.2009.02.009
    [9]
    HU C, LIU H X. A new bounding-surface plasticity model for cyclic behaviors of saturated clay[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/2/3): 101-119.
    [10]
    HU C, LIU H X. Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay[J]. Computers and Geotechnics, 2014, 55: 27-41. doi: 10.1016/j.compgeo.2013.07.012
    [11]
    DAFALIAS, Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341-347. doi: 10.1016/0093-6413(86)90047-9
    [12]
    李兴照, 黄茂松. 循环荷载作用下流变性软黏土的边界面模型[J]. 岩土工程学报, 2007, 29(2): 249-254. doi: 10.3321/j.issn:1000-4548.2007.02.016

    LI Xing-zhao, HUANG Mao-song. Boundary surface model of rheologically soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 249-254. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.02.016
    [13]
    秦立科. 非饱和黄土动力本构模型及其在地铁车站地震反应分析中的应用[D]. 西安: 长安大学, 2010.

    QIN Li-ke. Dynamic Constitutive Model of Unsaturated Loess and its Application in Seismic Response Analysis of Subway Stations[D]. Xi'an: Chang'an University, 2010. (in Chinese)
    [14]
    ZIENKIEWICZ-PANDE O C. The finite element method in engineering science[M]. 2nd ed. New York: McGraw-Hill, 1971.
    [15]
    骆俊晖, 缪林昌, 李仞玨. 考虑时间效应边界面模型在地铁工程中的应用[J]. 岩石力学与工程学报, 2017, 36(6): 236-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706025.htm

    LUO Jun-hui, MIAO Lin-chang, LI Yi. Application of boundary surface model considering time effect in metro engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 236-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201706025.htm
    [16]
    MANZARI M T, NOUR M A. On implicit integration of bounding surface plasticity models[J]. Computers and Structures, 1997, 63(3): 385-395.
    [17]
    姚仰平, 万征, 陈生水. 考虑颗粒破碎的动力UH模型[J]. 岩土工程学报, 2011, 33(7): 1036-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107007.htm

    YAO Yang-ping, WAN Zheng, CHEN Sheng-shui. Dynamic UH model considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1036-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107007.htm
    [18]
    ABBO A J, SLOAN S W. A smooth hyperbolic approximation to the Mohr-Coulomb Yield Criterion[J]. Computers and Structures, 1995, 54(3): 427-441.
    [19]
    任放, 盛谦, 常燕庭. 岩土类工程材料的蛋形屈服函数[J]. 岩土工程学报, 1993, 15(4): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199304004.htm

    REN Fang, SHENG Qian, CHANG Yan-ting. Egg-shaped yield function of geotechnical engineering materials[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(4): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199304004.htm
    [20]
    徐日庆, 杨林德, 龚晓南. 土的边界面应力应变本构关系[J]. 同济大学学报, 1997, 25(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701005.htm

    XU Ri-qing, YANG Lin-de, GONG Xiao-nan. Stress strain constitutive relationship of boundary surface of soils[J]. Journal of Tongji University, 1997, 25(1): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701005.htm
    [21]
    XU R Q, WANG X C, RONG X N. Macro- and meso-scale parametric analysis of egg-shaped yield surface of structural soil[J]. International Journal of Offshore and Polar Engineering, 2014, 24(4): 301-308.
    [22]
    CHENG X L, WANG J H, WANG Z X. Incremental elastoplastic FEM for simulating the deformation process of suction caissons subjected to cyclic loads in soft clays[J]. Applied Ocean Research, 2016, 59: 274-285.
    [23]
    徐干成, 谢定义, 郑颖人. 饱和砂土循环动应力应变特性的弹塑性模拟研究[J]. 岩土工程学报, 1995, 17(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC502.000.htm

    XU Qian-cheng, XIE Ding-yi, ZHENG Ying-ren. Elastoplastic simulation of cyclic dynamic stress and strain characteristics of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC502.000.htm
    [24]
    沈恺伦, 王立忠. 天然软黏土屈服面及流动法则试验研究[J]. 土木工程学报, 2009, 42(4): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200904019.htm

    SHEN Kai-lun, WANG Li-zhong. Experimental study on yield surface and flow law of natural soft clay[J]. Journal of Civil Engineering, 2009, 42(4): 119-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200904019.htm
    [25]
    沈扬, 周建, 龚晓南, 等. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. 岩土力学, 2009, 30(12): 3720-3726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200912030.htm

    SHEN Yang, ZHOU Jian, GONG Xiao-nan, et al. Experimental study on stress-strain behavior of intact soft clay considering changes in principal stress direction[J]. Rock and Soil Mechanics, 2009, 30(12): 3720-3726. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200912030.htm
    [26]
    钟辉虹, 黄茂松, 吴世明, 等. 循环荷载作用下软黏土变形特性研究[J]. 岩土工程学报, 2002, 24(5): 629-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200205020.htm

    ZHONG Hui-hong, HUANG Mao-song, WU Shi-ming, et al. Research on deformation characteristics of soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 629-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200205020.htm
    [27]
    HYODO M, YAMAMOTO Y, SUGIYAMA M. Undrained cyclic shear behaviour of normally consolidated clay subjected to initial static shear stress[J]. Japanese Society of Soil Mechanics and Foundation Engineering, 1994, 34(4): 1-11.

Catalog

    Article views (270) PDF downloads (151) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return