Citation: | SHEN Zhi-fu, GAO Feng, JIANG Ming-jing, WANG Zhi-hua, LIU Lu, GAO Hong-mei. An easy method to calculate van der Waals interaction between clay plate and spherical particle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 776-782. DOI: 10.11779/CJGE202104021 |
[1] |
陈芳, 周洋, 苏新, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105017.htm
CHEN Fang, ZHOU Yang, SU Xin, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 95-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105017.htm
|
[2] |
蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG M J. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 104-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[3] |
JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116. doi: 10.1016/j.compgeo.2013.07.006
|
[4] |
YAO M, ANANDARAJAH A. Three-Dimensional discrete element method of analysis of clays[J]. Journal of Engineering Mechanics, 2003, 129(6): 585-596. doi: 10.1061/(ASCE)0733-9399(2003)129:6(585)
|
[5] |
LONDON F. On the theory and systematics of molecular forces[J]. Journal of Physics, 1930, 63(3/4): 245-279. (in German)
|
[6] |
CASIMIR H B G, POLDER D. The influence of retardation on the London-van der Waals forces[J]. Physical Review, 1948, 73(4): 360-372. doi: 10.1103/PhysRev.73.360
|
[7] |
LIFSHITZ E M. The theory of molecular attractive forces between solids[J]. Soviet Physics, 1956, 2(1): 73-83.
|
[8] |
ANANDARAJAH A, CHEN J. Single correction function for computing retarded van der Waals attraction[J]. Journal of Colloid and Interface Science, 1995, 176(2): 293-300. doi: 10.1006/jcis.1995.9964
|
[9] |
HAMAKER H C. The London-van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072. doi: 10.1016/S0031-8914(37)80203-7
|
[10] |
De BOER J H. The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins[J]. Transactions of the Faraday Society, 1936, 32: 10-37. doi: 10.1039/tf9363200010
|
[11] |
ANANDARAJAH A, CHEN J. Van der Waals attractive force between clay particles in water and contaminants[J]. Soils and Foundations, 1997, 37(2): 27-37. doi: 10.3208/sandf.37.2_27
|
[1] | HE Jun, LI Wenjing, MEI Lifang, KANG Duoyun, ZUO Ziwei. Effects of preloading on seawater erosion resistance of solidified soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 247-252. DOI: 10.11779/CJGE2024S20041 |
[2] | MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001 |
[3] | LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409 |
[4] | LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508 |
[5] | LIU Hong-fei, LIU Jun-fang, SU Yue-hong, JIN Yan. New method for dealing with unconfined compressive strength outliers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 137-140. DOI: 10.11779/CJGE2020S1027 |
[6] | WU Hao-liang, BO Yu-ling, DU Yan-jun, WEI Ming-li, XUE Qiang. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. DOI: 10.11779/CJGE2019S1035 |
[7] | WANG Dong-xing, HE Fu-jin, ZHU Jia-ye. Performance and mechanism of CO2 carbonated slag-CaO- MgO-solidified soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2197-2206. DOI: 10.11779/CJGE201912004 |
[8] | WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012 |
[9] | DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007 |
[10] | ZHUANG Xinshan, WANG Gongxun, ZHU Ruigeng, TIAN Bi. Experimental study on unconfined compressive strength of clays stabilized with fly ash and slag[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 965-969. |