• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
Citation: MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001

Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles

More Information
  • Received Date: June 20, 2024
  • The utilization of enzyme-induced carbonate precipitation (EICP) to enhance the strength of rubber particles mixed with clay as lightweight backfill materials can effectively absorb waste tires and promote the sustainable utilization of rubber particles in geotechnical engineering. In this study, the strength characteristics and mechanism of the composite-modified clay are systematically investigated using the EICP technique combined with rubber particles. The results show that the EICP treatment can improve the unconfined compressive strength of the mixed clay with tire particles, and the best treatment effect was achieved when the concentration of the cementation solution is 0.5 mol/L. As the concentration of cementation solution increases, the CaCO3 content also increases, but the conversion rate decreases. The strength and modulus of elasticity of the EICP-treated clay mixed with rubber particles first increase and then decrease with the content of rubber particles, and the optimal content of rubber particles is 5%. The optimal amount of rubber particles to incorporate is 5%. The microstructural analysis reveals that the CaCO3 produced by the EICP significantly improves the bonding between rubber particles and soil particles, while also filling the pores. The results of the study can provide a theoretical basis for the utilization of the EICP-treated rubber particles mixed with clay as filling materials.
  • [1]
    TAJDINI M, NABIZADEH A, TAHERKHANI H, et al. Effect of added waste rubber on the properties and failure mode of kaolinite clay[J]. International Journal of Civil Engineering, 2017, 15(6): 949-958. doi: 10.1007/s40999-016-0057-7
    [2]
    HIDALGO SIGNES C, GARZÓN-ROCA J, MARTÍNEZ FERNÁNDEZ P, et al. Swelling potential reduction of Spanish argillaceous marlstone Facies Tap soil through the addition of crumb rubber particles from scrap tyres[J]. Applied Clay Science, 2016, 132: 768-773.
    [3]
    崔猛, 符晓, 郑俊杰, 等. 黄豆脲酶诱导碳酸钙沉淀多变量试验研究[J]. 岩土力学, 2022, 43(11): 3027-3035.

    CUI Meng, FU Xiao, ZHENG Junjie, et al. Multivariate experimental study on soybean urease induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(11): 3027-3035. (in Chinese)
    [4]
    王恒星, 缪林昌, 孙潇昊, 等. 不同温度环境下EICP固砂及优化试验研究[J]. 东南大学学报(自然科学版), 2022, 52(4): 712-719.

    WANG Hengxing, MIAO Linchang, SUN Xiaohao, et al. Experimental study on sand solidification and optimization of EICP in different temperature environments[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 712-719. (in Chinese)
    [5]
    吴林玉, 缪林昌, 孙潇昊, 等. 植物源脲酶诱导碳酸钙固化砂土试验研究[J]. 岩土工程学报, 2020, 42(4): 714-720.

    WU Linyu, MIAO Linchang, SUN Xiaohao, et al. Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 714-720. (in Chinese)
    [6]
    WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505
    [7]
    CHOI S G, PARK S S, WU S F, et al. Methods for calcium carbonate content measurement of biocemented soils[J]. Journal of Materials in Civil Engineering, 2017, 29(11): 06017015. doi: 10.1061/(ASCE)MT.1943-5533.0002064
    [8]
    ZHAO Y, MENG F Y, FAN P S, et al. Surface improvement of scrap rubber by microbially induced carbonate precipitation and its effect on mechanical behavior of rubberised mortar[J]. Construction and Building Materials, 2022, 323: 126526. doi: 10.1016/j.conbuildmat.2022.126526
    [9]
    DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36(5/6): 435-451.
    [10]
    XU K, HUANG M, CUI M J, et al. Retarding effect of cementation solution concentration on cementation ability of calcium carbonate crystal induced using crude soybean enzyme[J]. Acta Geotechnica, 2023, 18(11): 6235-6251.
  • Related Articles

    [1]WU Min, HUANG Yinghao, DONG Shijun, ZHANG Rongjun. Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 470-476. DOI: 10.11779/CJGE20231212
    [2]Experimental study on consolidation of dredged sludge by grouting flocculation-vacuum preloading method considering the influence of soil salinization[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240047
    [3]LIU Lu-lu, CAI Guo-jun, LIU Song-yu. Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012
    [4]CAI Yuan-qiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225. DOI: 10.11779/CJGE202102001
    [5]ZHANG Rong-jun, DONG Chao-qiang, ZHENG Jun-jie, LU Zhan. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. DOI: 10.11779/CJGE201910018
    [6]SHEN Yang, FENG Zhao-yan, LIU Han-long, WANG Qin-cheng, LI An. Experimental study on effects of initial concentration on settling velocity characteristics of turbid surface of South China Sea coral mud[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 22-26. DOI: 10.11779/CJGE2018S2005
    [7]ZHENG Ai-rong, ZHU Hong-man. Experimental study on flocculation-accelerated deposition of dredger fill[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 145-148. DOI: 10.11779/CJGE2017S2036
    [8]WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022
    [9]DENG Dongsheng, HONG Zhenshun, LIU Chuanjun, DING Jianwen, HONG Pengyun. Large-scale model tests on dewater of dredged clay by use of ventilating vacuum method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 250-253.
    [10]OU Xiaoduo, CAO Jing, ZHOU Dong, HUANG Shaokeng. Experimental study on chemical flocculating action of waste flush fluid[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 201-203.
  • Cited by

    Periodical cited type(4)

    1. 陈祎,刘明昊,赵智慧. 钻孔灌注桩废弃泥浆快速絮凝脱水技术与机理研究. 建筑施工. 2025(01): 6-11 .
    2. 孙万吉,陈建,梁志学,李朝阳,赵永享. 碱渣-矿渣-水玻璃对流态固化土的影响研究. 中国新技术新产品. 2024(19): 116-118+140 .
    3. 唐伟超,赵东平,王风,朱龙,汤青山,和琦. 砂卵土-泥岩复合地层土压平衡盾构渣土脱水试验. 现代隧道技术. 2024(S1): 684-693 .
    4. 张达志. 基桩施工产生的废弃泥浆絮凝脱水后的土体工程性质研究. 四川水力发电. 2024(S2): 29-34 .

    Other cited types(1)

Catalog

    Article views (86) PDF downloads (14) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return