• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Lu-lu, CAI Guo-jun, LIU Song-yu. Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012
Citation: LIU Lu-lu, CAI Guo-jun, LIU Song-yu. Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012

Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt

More Information
  • Received Date: November 20, 2021
  • Available Online: December 13, 2022
  • The improved soil has a wide application potential in foundation treatment, pipeline protection, energy absorption and vibration reduction in the field of energy rock and soil. The researches on the correlation between thermal and mechanical properties of soil closely related to the energy rock and soil are of important reference value for guiding the design, construction and maintenance of underground energy structures. To reveal the evolution laws of the thermal and mechanical properties of silt improved by recycled polyester fiber and inorganic curing agent with curing age, the macroscopic tests (compaction, unconfined compressive strength, resilience modulus), microscopic tests (mercury injection and scanning electron microscopy) and thermal conductivity tests are carried out. The changes of thermal properties (thermal conductivity), mechanical properties (strength, resilience modulus), content of recycled polyester fiber, water content and age of the improved silt are analyzed. The changes of pore size and microstructure of the improved silt are also discussed. The internal relationship between thermal and mechanical properties of the improved silt is expounded. The results show that the addition of the fiber increases the optimum moisture content of silt. The thermal conductivity of the improved silt decreases with the increase of the fiber content and age. After 28 days of age, the change of water content has few effects on the thermal conductivity of the improved silt. The road performance of improved silt meets the design requirements of highway subgrade. The cementing materials derived from the improved silt can wrap particles and fill pores, and inhibit the internal heat conduction of the silt. The thermal conductivity of the improved silt decreases with the increase of the compressive strength and resilience modulus, showing a negative correlation.
  • [1]
    李建军, 梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学, 2009, 30(2): 473–477. doi: 10.3969/j.issn.1000-7598.2009.02.032

    LI Jian-jun, LIANG Ren-wang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics, 2009, 30(2): 473–477. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.02.032
    [2]
    汪军, 杨璇, 傅婷. 废旧纺织品回收综合利用和产品开发相关问题的探讨[J]. 现代纺织技术, 2013, 21(3): 25–28, 33. doi: 10.3969/j.issn.1009-265X.2013.03.007

    WANG Jun, YANG Xuan, FU Ting. Research on the recovery and comprehensive utilization of waste textiles and product development[J]. Advanced Textile Technology, 2013, 21(3): 25–28, 33. (in Chinese) doi: 10.3969/j.issn.1009-265X.2013.03.007
    [3]
    邰玉蕾, 赵亚娟, 马希晨, 等. 废旧聚酯瓶片的回收新技术[J]. 塑料科技, 2004(4): 61–64. doi: 10.3969/j.issn.1005-3360.2004.04.015

    TAI Yu-lei, ZHAO Ya-jun, MA Xi-chen, et al. New recycling technologies of waste polyester bottle [J]. Plastics Science and Technology, 2004(4): 61–64. (in Chinese) doi: 10.3969/j.issn.1005-3360.2004.04.015
    [4]
    王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933–1940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm

    WANG De-yin, TANG Chao-sheng, et al. Shear strength characteristics of fiber reinforced unsaturated cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933–1940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm
    [5]
    AKBULUT S, ARASAN S, KALKAN E. Modification of clayey soils using scrap tire rubber and synthetic fibers[J]. Applied Clay Science, 2007, 38(1): 23–32.
    [6]
    唐朝生, 施斌, 高玮, 等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2968–2973. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1057.htm

    TANG Chao-sheng, SHI Bin, GAO Wei, et al. Study on the effect of sand content on the strength of polypropylene fiber reinforced cohesive soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2968–2973. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1057.htm
    [7]
    MILLER C J, RIFAI S. Fiber reinforcement for waste containment soil liners[J]. Journal of Environmental Engineering, 2004, 130(8): 891–895. doi: 10.1061/(ASCE)0733-9372(2004)130:8(891)
    [8]
    KUMAR A, WALIA B S, BAJAJ A. Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil[J]. Journal of Materials in Civil Engineering, 2007, 19(3): 242–248. doi: 10.1061/(ASCE)0899-1561(2007)19:3(242)
    [9]
    SHAO W, CETIN B, LI Y D, et al. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber[J]. Geotechnical and Geological Engineering, 2014, 32(4): 901–910. doi: 10.1007/s10706-014-9766-3
    [10]
    唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186–1193. doi: 10.3321/j.issn:0559-9350.2007.10.006

    TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186–1193. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.10.006
    [11]
    CHANGIZI F, HADDAD A. Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 367–378. doi: 10.1016/j.jrmge.2015.03.013
    [12]
    LIU L L, CAI G J, LIU X Y, et al. Evaluation of thermal-mechanical properties of quartz sand-bentonite- carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J]. Energy and Buildings, 2019, 202: 109407. doi: 10.1016/j.enbuild.2019.109407
    [13]
    土工试验规程: SL 237—1999[S]. 1999.

    Specification of Soil Test: SL 237—1999[S]. 1999. (in Chinese)
    [14]
    张蒋. 聚丙烯纤维加筋粉煤灰—土力学性能研究[D]. 武汉: 湖北工业大学, 2019.

    ZHANG Jiang. Study on Mechanical Behaviors of Polypropylene Fiber Reinforced Fly Ash-Soil Mixture[D]. Wuhan: Hubei University of Technology, 2019. (in Chinese)
    [15]
    ZHANG Y, JOHNSON A E, WHITE D J. Freeze-thaw performance of cement and fly ash stabilized loess[J]. Transportation Geotechnics, 2019, 21: 100279. doi: 10.1016/j.trgeo.2019.100279
    [16]
    朱聪. 再生建筑石膏水化硬化及增强改性研究[D]. 重庆: 重庆大学, 2018.

    ZHU Cong. Study on the Hydration-Hardening Mechanism and Reinforced Modification of Recycled Building Gypsum[D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [17]
    林彤, 刘祖德. 粉煤灰与生石灰加固软土的室内试验研究[J]. 岩土力学, 2003, 24(6): 1049–1052. doi: 10.3969/j.issn.1000-7598.2003.06.039

    LIN Tong, LIU Zu-de. Study on indoor tests of fly ash and quick lime improving soft soils[J]. Rock and Soil Mechanics, 2003, 24(6): 1049–1052. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.06.039
    [18]
    CHADUVULA U, VISWANADHAM B, KODIKARA J. A study on desiccation cracking behavior of polyester fiberreinforced expansive clay[J]. Applied Clay Science, 2017, 142: 163–172. doi: 10.1016/j.clay.2017.02.008
    [19]
    唐朝生, 顾凯. 聚丙烯纤维和水泥加固软土的强度特性[J]. 土木工程学报, 2011, 44(增刊2): 5–8. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S2003.htm

    TANG Chao-sheng, GU Kai. Strength behaviour of polypropylene fiber reinforced cement stabilized soft soil[J]. China Civil Engineering Journal, 2011, 44(S2): 5–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S2003.htm
    [20]
    公路土工试验规程: JTG E40—2007, 2007.

    Test Methods of Soils Highway Engineering: JTG E40—2007[S]. (in Chinese)
    [21]
    张涛. 基于工业副产品木质素的粉土固化改良技术与工程应用研究[D]. 南京: 东南大学, 2015.

    ZHANG Tao. Study on Technology and Engineering Application of Silt Solidified by Lignin[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [22]
    ZHANG N, WANG Z Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172–183. doi: 10.1016/j.ijthermalsci.2017.03.013
    [23]
    公路沥青路面设计规范: JTG D50—2006[S]. 北京: 人民交通出版社, 2006.

    Specifications for Design of Highway Asphalt Pavement: JTG D50—2006[S]. Beijing: China Communications Press, 2006. (in Chinese)
    [24]
    唐朝生, 施斌, 蔡奕, 等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学, 2007, 28(9): 1796–1800. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709005.htm

    TANG Chao-sheng, SHI Bin, CAI Yi, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796–1800. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709005.htm
    [25]
    MISHRA S, MOHANTY A K, DRZAL L T, et al. A review on pineapple leaf fibers, sisal fibers and their biocomposites[J]. Macromolecular Materials and Engineering, 2004, 289(11): 955–974. doi: 10.1002/mame.200400132
    [26]
    PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construction and Building Materials, 2002, 16(2): 123–131. doi: 10.1016/S0950-0618(02)00008-9
    [27]
    MATTONE R. Sisal fibre reinforced soil with cement or cactus pulp in bahareque technique[J]. Cement and Concrete Composites, 2005, 27(5): 611–616. http://www.onacademic.com/detail/journal_1000034581102310_b96e.html
    [28]
    张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

    ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1–13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm
    [29]
    LU S G, SUN F F, ZONG Y T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (vertisol) [J]. Catena, 2014, 114: 37–44.
    [30]
    蔡光华. 活性氧化镁碳化加固软弱土的试验与应用研究[D]. 南京: 东南大学, 2017.

    CAI Guang-hua. Experimental and Application Studies on Soft Soil Carbonated and Stabilized By Reactive Magnesia[D]. Nanjing: Southeast University, 2017. (in Chinese)
    [31]
    丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化处理与流动性试验研究[J]. 岩土力学, 2011, 32(增刊1): 280–284. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1051.htm

    DING Jian-wen, HONG Zhen-shun, LIU Song-yu. Study of flow-solidification method and fluidity test of dredged clays[J]. Rock and Soil Mechanics, 2011, 32(S1): 280–284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1051.htm
    [32]
    LI X, ZHANG L M. Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129–141.
    [33]
    LEE J O, CHOI H, LEE J Y. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy, 2016, 94: 848–855.
    [34]
    LEE J H, SALGADO R, BERNAL A, et al. Shredded tires and rubber-sand as lightweight backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(2): 132–141.
    [35]
    ROSHANKHAH S, GARCIA A V, SANTAMARINA J C. Thermal conductivity of sand-silt mixtures[J]. American Society of Civil Engineers, 2021(2).
  • Related Articles

    [1]ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838
    [2]LI Xiao-kang, LI Xu, WU Yang, WANG Fei. Experimental study on service performance of capillary barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 189-194. DOI: 10.11779/CJGE2022S1034
    [3]LING Hua, WANG Wei, WANG Fang, FU Hua, HAN Hua-qiang. Experimental study on hydraulic fracture of gravelly soil core[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1444-1448. DOI: 10.11779/CJGE201808009
    [4]WANG Huan-ling, XU Wei-ya, CHAO Zhi-ming, KONG Qian. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002
    [5]GUO Yang, CUI Wei, CHEN Fang-Bin, CHEN Qiao. Analysis and experimental study of a PHC uplift pile with hold-hoop connection[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1007-1010.
    [6]WU Zheng-guang, ZHANG Hua. Experimental study on entrapped air content in quasi-saturated soil subjected to steady ponded water infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 274-279.
    [7]LUO Xingwen, YANG Mingliang, YAO Hailin, GU Zhimeng. Experimental study on engineering mechanical properities of stale refuse[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 622-625.
    [8]FAN Qingzhong, GAO Yanfa. Experimental study on creep properties of rocks under stepwise loading[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 38-41.
    [9]OU Xiaoduo, CAO Jing, ZHOU Dong, HUANG Shaokeng. Experimental study on chemical flocculating action of waste flush fluid[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 201-203.
    [10]Liu Zengli, Li Hongsheng, Zhu Yuanlin, Peng Wanwei. Experimental study of criteria of compound fracture for frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 13-17.
  • Other Related Supplements

  • Cited by

    Periodical cited type(8)

    1. 郭江峰,胡建林,薛金昊,赵天怡,张炜炯. 竖向荷载下膨胀土中桩侧摩阻力室内模型试验分析. 兰州工业学院学报. 2023(04): 28-33 .
    2. 钱建固,彭慧敏,林志强,张明远. 吸湿环境下膨胀土桩基抗拔承载特性足尺试验研究. 建筑结构学报. 2023(12): 100-109 .
    3. 齐旭辉,唐永成,蔡文江. 含水率对膨胀土地基载体桩抗压承载力影响的研究. 广东土木与建筑. 2022(01): 26-28 .
    4. 江杰,王顺苇,欧孝夺,龙逸航,张探. 竖向力与扭矩共同作用下单桩承载特性试验. 科学技术与工程. 2021(06): 2433-2438 .
    5. 汤斌,覃明兰,周标和. 基于触变效应的湛江组结构性黏土单桩模型试验. 桂林理工大学学报. 2021(02): 311-317 .
    6. 周大卫,周盛全,张勇飞,王玮健. 动静荷载作用下改良膨胀土力学特性研究. 辽宁工业大学学报(自然科学版). 2020(02): 108-113 .
    7. 罗文豪,王金淑,饶鸿. 桩基与膨胀土浸水室内模型试验研究. 四川建筑. 2020(05): 131-134 .
    8. 江杰,王顺苇,欧孝夺,付臣志. 黏土地基中桩顶扭矩-竖向荷载加载路径下单桩承载特性分析. 岩土力学. 2020(11): 3573-3582 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return