• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838
Citation: ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838

Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement

More Information
  • Received Date: July 04, 2022
  • Available Online: March 05, 2023
  • The electro-osmosis has been applied experimentally in the fields of ground improvement, silt dredging and heavy metal pollution remediation. However, the potential loss at the clay-electrode interface during electro-osmosis consolidation is high, resulting in high energy consumption. In this study, the reaction process at the clay-electrode interface is analyzed from an electrochemical perspective to explain the mechanism of interfacial resistance. Based on the interfacial resistance model, the indoor electro-osmotic tests are carried out using metallic electrodes (copper) and electrodes of electro-kinetic geosynthetic to study the changes in the interface resistance under long-term energization. The results show that the interfacial resistance model can be used to analyze the mechanism of interfacial resistance change under long-term electroosmotic conditions. The total interfacial resistance is influenced by the cathodic interfacial resistance at the early stage of energization, and at the later stage of electroosmosis, it is more influenced by the anode resistance. The interfacial resistance is an important influence on the efficiency of electro-osmotic drainage. Therefore, it should be monitored and used as a control index for electro-osmotic design in the project.
  • [1]
    文海家, 严春风, 汪东云. 吹填软土的工程特性研究[J]. 重庆建筑大学学报, 1999, 21(2): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN902.016.htm

    WEN Haijia, YAN Chunfeng, WANG Dongyun. Some engineering properties of the dredger fill[J]. Journal of Chongqing Jianzhu University, 1999, 21(2): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN902.016.htm
    [2]
    YEUNG A T, GU Y Y. A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011, 195: 11-29. doi: 10.1016/j.jhazmat.2011.08.047
    [3]
    MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electro-osmosis[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2001, 5(1): 3-11. doi: 10.1680/grim.2001.5.1.3
    [4]
    BJERRUM L, MOUM J, EIDE O. Application of electro-osmosis to a foundation problem in a Norwegian quick clay[J]. Géotechnique, 1967, 17(3): 214-235. doi: 10.1680/geot.1967.17.3.214
    [5]
    CASAGRANDE L. Stabilization of soils by means of electro-osmosis: state of the art[J]. Journal of the Boston Society of Civil Engineers, 1983, 69(2): 255-302.
    [6]
    ZHUANG Y F, WANG Z. Interface electric resistance of electroosmotic consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2007, 133(12): 1617-1621. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1617)
    [7]
    谢新宇, 李卓明, 郑凌逶, 等. 电渗固结中接触电阻影响因素的试验研究[J]. 中南大学学报(自然科学版), 2018, 49(3): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803019.htm

    XIE Xinyu, LI Zhuoming, ZHENG Lingwei, et al. Experimental study on influencing factors of contact resistance on electroosmotic consolidation[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 655-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803019.htm
    [8]
    郭康仕. 电渗电极与接触电阻特性及模型参数特性研究[D]. 武汉: 武汉大学, 2018.

    GUO Kangshi. Study on Characteristics of Electro-Osmosis Electrode and Contact Resistance and Model Parameters[D]. Wuhan: Wuhan University, 2018. (in Chinese)
    [9]
    GAN Q, ZHOU J, TAO Y, et al. Interfacial resistance model for electro-osmotic system[J]. Géotechnique, 2022: 1-64.
    [10]
    HAMANN C H, HAMNETT A, VIELSTICH W. Elec-trochemistry[M]. Weinheim: Wiley-VCH, 2007.
    [11]
    高鹏, 朱永明, 于元春. 电化学基础教程[M]. 2版. 北京: 化学工业出版社, 2019.

    GAO Peng, ZHU Yongming, YU Yuanchun. Basic Electrochemistry Materials[M]. 2nd ed. Beijing: Chemical Industry Press Co., Ltd, 2019. (in Chinese)
    [12]
    GLENDINNING S, LAMONT-BLACK J, JONES C J F P. Treatment of sewage sludge using electrokinetic geosynthetics[J]. Journal of Hazardous Materials, 2007, 139(3): 491-499. doi: 10.1016/j.jhazmat.2006.02.046
    [13]
    BERGADO D T, BALASUBRAMANIAM A S, PATAWARAN M A B, et al. Electro-osmotic consolidation of soft Bangkok clay with prefabricated vertical drains[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2000, 4(4): 153-163. doi: 10.1680/grim.2000.4.4.153
    [14]
    查全性. 金属钝化理论的进展[J]. 化学通报, 1963, 26(11): 15-19, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196311002.htm

    ZHA Quanxing. Progress in metal passivation theory[J]. Chemistry, 1963, 26(11): 15-19, 5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196311002.htm
    [15]
    SCOTT K. Electrochemical Processes for Clean Technology[M]. Cambridge: Royal Society of Chemistry, 1995.
    [16]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
    [17]
    TANG X W, LI Z Z, CHEN Y M, et al. Removal of Cu(Ⅱ) from aqueous solution by adsorption on Chinese Quaternary loess: Kinetics and equilibrium studies[J]. Journal of Environmental Science and Health, Part A, 2008, 43(7): 779-791. doi: 10.1080/10934520801960144
    [18]
    李振泽. 土对重金属离子的吸附解吸特性及其迁移修复机制研究[D]. 杭州: 浙江大学, 2009.

    LI Zhenze. Mechanism of Sorption, Desorption, Diffusion and Remediation of Heavy Metals in Soils[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
    [19]
    查甫生, 刘松玉, 杜延军, 等. 非饱和黏性土的电阻率特性及其试验研究[J]. 岩土力学, 2007, 28(8): 1671-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm

    ZHA Fusheng, LIU Songyu, DU Yanjun, et al. The electrical resistivity characteristics of unsaturated clayey soil[J]. Rock and Soil Mechanics, 2007, 28(8): 1671-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm
    [20]
    YEUNG A T, HSU C N, MENON R M. Electrokinetic extraction of lead from kaolinites: Ⅰ numerical modeling[J]. The Environmentalist, 2011, 31(1): 26-32. doi: 10.1007/s10669-010-9295-4
    [21]
    SHANG J Q. Zeta potential and electroosmotic permeability of clay soils[J]. Canadian Geotechnical Journal, 1997, 34(4): 627-631. doi: 10.1139/t97-28
    [22]
    MATTSON E D, BOWMAN R S, LINDGREN E R. Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing[J]. Journal of Contaminant Hydrology, 2002, 54(1/2): 99-120.
    [23]
    ZHOU J, GAN Q, TAO Y. Electro-osmotic permeability model based on ions migration[J]. Acta Geotechnica, 2022, 17(6): 2379-2393.
  • Related Articles

    [1]WANG Huan, YANG Ligong, ZUO Dianjun, LUO Jiwei. Influences of confining pressure and shear rate on stress characteristics of triaxial drainage tests on calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 249-253. DOI: 10.11779/CJGE2024S10033
    [2]YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350
    [3]LIU Hanlong, ZHONG Wenhan, ZHANG Wengang, ZHOU Hang, WANG Luqi, GU Dongming. Hydraulic erosion characteristics based on transparent soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1868-1877. DOI: 10.11779/CJGE20220714
    [4]DENG Da-peng, LIU Qi, LU Yao-ru, REN Biao. Simulation experiments on influences of bedrock exposed rate and soil thickness on soil erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 160-163. DOI: 10.11779/CJGE2022S2035
    [5]LIU Fei-yu, ZHU Chen, WANG Jun. Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 832-840. DOI: 10.11779/CJGE202105006
    [6]GAO Juan, LAI Yuan-ming, CHANG dan, NIU Ya-qiang. Strength criterion for frozen saline sand considering effects of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 104-110. DOI: 10.11779/CJGE201901011
    [7]KONG Ling-wei, XIONG Chun-fa, GUO Ai-guo, YANG Ai-wu. Effects of shear rate on strength properties and pile-soil interface of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 13-16. DOI: 10.11779/CJGE2017S2004
    [8]XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.
    [9]ZHANG Ping, LI Ning, HE Ruolan, XU Jianguang. Mechanical properties of fractured media containing intermittent fractures at different strain rates[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 750-755.
    [10]YANG Shijiao, ZENG Sheng, WANG Helong. Experimental analysis on mechanical effects of loading rates on limestone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 786-788.
  • Cited by

    Periodical cited type(3)

    1. 宋伟豪,朱晗玥,毛佳,赵兰浩. 三维流体非协调网格隐式插值方法. 水动力学研究与进展A辑. 2024(02): 196-203 .
    2. 马浩然,林涛,雷万能,荣云,李艺博,刘威. 智能扦检天轨桁架风载安全性分析. 粮油仓储科技通讯. 2024(04): 15-18 .
    3. 何朝葵,朱永忠,杨凤莲. 一维椭圆型方程界面问题的弱有限元方法. 数学的实践与认识. 2023(08): 237-247 .

    Other cited types(2)

Catalog

    Article views (428) PDF downloads (147) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return