Citation: | ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838 |
[1] |
文海家, 严春风, 汪东云. 吹填软土的工程特性研究[J]. 重庆建筑大学学报, 1999, 21(2): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN902.016.htm
WEN Haijia, YAN Chunfeng, WANG Dongyun. Some engineering properties of the dredger fill[J]. Journal of Chongqing Jianzhu University, 1999, 21(2): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN902.016.htm
|
[2] |
YEUNG A T, GU Y Y. A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011, 195: 11-29. doi: 10.1016/j.jhazmat.2011.08.047
|
[3] |
MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electro-osmosis[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2001, 5(1): 3-11. doi: 10.1680/grim.2001.5.1.3
|
[4] |
BJERRUM L, MOUM J, EIDE O. Application of electro-osmosis to a foundation problem in a Norwegian quick clay[J]. Géotechnique, 1967, 17(3): 214-235. doi: 10.1680/geot.1967.17.3.214
|
[5] |
CASAGRANDE L. Stabilization of soils by means of electro-osmosis: state of the art[J]. Journal of the Boston Society of Civil Engineers, 1983, 69(2): 255-302.
|
[6] |
ZHUANG Y F, WANG Z. Interface electric resistance of electroosmotic consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2007, 133(12): 1617-1621. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1617)
|
[7] |
谢新宇, 李卓明, 郑凌逶, 等. 电渗固结中接触电阻影响因素的试验研究[J]. 中南大学学报(自然科学版), 2018, 49(3): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803019.htm
XIE Xinyu, LI Zhuoming, ZHENG Lingwei, et al. Experimental study on influencing factors of contact resistance on electroosmotic consolidation[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 655-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803019.htm
|
[8] |
郭康仕. 电渗电极与接触电阻特性及模型参数特性研究[D]. 武汉: 武汉大学, 2018.
GUO Kangshi. Study on Characteristics of Electro-Osmosis Electrode and Contact Resistance and Model Parameters[D]. Wuhan: Wuhan University, 2018. (in Chinese)
|
[9] |
GAN Q, ZHOU J, TAO Y, et al. Interfacial resistance model for electro-osmotic system[J]. Géotechnique, 2022: 1-64.
|
[10] |
HAMANN C H, HAMNETT A, VIELSTICH W. Elec-trochemistry[M]. Weinheim: Wiley-VCH, 2007.
|
[11] |
高鹏, 朱永明, 于元春. 电化学基础教程[M]. 2版. 北京: 化学工业出版社, 2019.
GAO Peng, ZHU Yongming, YU Yuanchun. Basic Electrochemistry Materials[M]. 2nd ed. Beijing: Chemical Industry Press Co., Ltd, 2019. (in Chinese)
|
[12] |
GLENDINNING S, LAMONT-BLACK J, JONES C J F P. Treatment of sewage sludge using electrokinetic geosynthetics[J]. Journal of Hazardous Materials, 2007, 139(3): 491-499. doi: 10.1016/j.jhazmat.2006.02.046
|
[13] |
BERGADO D T, BALASUBRAMANIAM A S, PATAWARAN M A B, et al. Electro-osmotic consolidation of soft Bangkok clay with prefabricated vertical drains[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2000, 4(4): 153-163. doi: 10.1680/grim.2000.4.4.153
|
[14] |
查全性. 金属钝化理论的进展[J]. 化学通报, 1963, 26(11): 15-19, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196311002.htm
ZHA Quanxing. Progress in metal passivation theory[J]. Chemistry, 1963, 26(11): 15-19, 5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196311002.htm
|
[15] |
SCOTT K. Electrochemical Processes for Clean Technology[M]. Cambridge: Royal Society of Chemistry, 1995.
|
[16] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
|
[17] |
TANG X W, LI Z Z, CHEN Y M, et al. Removal of Cu(Ⅱ) from aqueous solution by adsorption on Chinese Quaternary loess: Kinetics and equilibrium studies[J]. Journal of Environmental Science and Health, Part A, 2008, 43(7): 779-791. doi: 10.1080/10934520801960144
|
[18] |
李振泽. 土对重金属离子的吸附解吸特性及其迁移修复机制研究[D]. 杭州: 浙江大学, 2009.
LI Zhenze. Mechanism of Sorption, Desorption, Diffusion and Remediation of Heavy Metals in Soils[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
|
[19] |
查甫生, 刘松玉, 杜延军, 等. 非饱和黏性土的电阻率特性及其试验研究[J]. 岩土力学, 2007, 28(8): 1671-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm
ZHA Fusheng, LIU Songyu, DU Yanjun, et al. The electrical resistivity characteristics of unsaturated clayey soil[J]. Rock and Soil Mechanics, 2007, 28(8): 1671-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm
|
[20] |
YEUNG A T, HSU C N, MENON R M. Electrokinetic extraction of lead from kaolinites: Ⅰ numerical modeling[J]. The Environmentalist, 2011, 31(1): 26-32. doi: 10.1007/s10669-010-9295-4
|
[21] |
SHANG J Q. Zeta potential and electroosmotic permeability of clay soils[J]. Canadian Geotechnical Journal, 1997, 34(4): 627-631. doi: 10.1139/t97-28
|
[22] |
MATTSON E D, BOWMAN R S, LINDGREN E R. Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing[J]. Journal of Contaminant Hydrology, 2002, 54(1/2): 99-120.
|
[23] |
ZHOU J, GAN Q, TAO Y. Electro-osmotic permeability model based on ions migration[J]. Acta Geotechnica, 2022, 17(6): 2379-2393.
|
[1] | WANG Huan, YANG Ligong, ZUO Dianjun, LUO Jiwei. Influences of confining pressure and shear rate on stress characteristics of triaxial drainage tests on calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 249-253. DOI: 10.11779/CJGE2024S10033 |
[2] | YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350 |
[3] | LIU Hanlong, ZHONG Wenhan, ZHANG Wengang, ZHOU Hang, WANG Luqi, GU Dongming. Hydraulic erosion characteristics based on transparent soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1868-1877. DOI: 10.11779/CJGE20220714 |
[4] | DENG Da-peng, LIU Qi, LU Yao-ru, REN Biao. Simulation experiments on influences of bedrock exposed rate and soil thickness on soil erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 160-163. DOI: 10.11779/CJGE2022S2035 |
[5] | LIU Fei-yu, ZHU Chen, WANG Jun. Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 832-840. DOI: 10.11779/CJGE202105006 |
[6] | GAO Juan, LAI Yuan-ming, CHANG dan, NIU Ya-qiang. Strength criterion for frozen saline sand considering effects of loading rates[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 104-110. DOI: 10.11779/CJGE201901011 |
[7] | KONG Ling-wei, XIONG Chun-fa, GUO Ai-guo, YANG Ai-wu. Effects of shear rate on strength properties and pile-soil interface of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 13-16. DOI: 10.11779/CJGE2017S2004 |
[8] | XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. |
[9] | ZHANG Ping, LI Ning, HE Ruolan, XU Jianguang. Mechanical properties of fractured media containing intermittent fractures at different strain rates[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 750-755. |
[10] | YANG Shijiao, ZENG Sheng, WANG Helong. Experimental analysis on mechanical effects of loading rates on limestone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 786-788. |