Citation: | DENG Da-peng, LIU Qi, LU Yao-ru, REN Biao. Simulation experiments on influences of bedrock exposed rate and soil thickness on soil erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 160-163. DOI: 10.11779/CJGE2022S2035 |
[1] |
LIU Q, DENG D P, YAO B J, et al. Analysis of the Karst springs' supply sources in rocky desertification area of Guanling-Huajiang, Guizhou, China[J]. Carbonates and Evaporites, 2020, 35(3): 1–11.
|
[2] |
卢耀如, 张凤娥, 刘长礼, 等. 中国典型地区岩溶水资源及其生态水文特性[J]. 地球学报, 2006, 27(5): 393–402. doi: 10.3321/j.issn:1006-3021.2006.05.002
LU Yao-ru, ZHANG Feng-e, LIU Chang-li, et al. Karst water resources in typical area of China and their eco-hydrological characteristics[J]. Acta Geoscientica Sinica, 2006, 27(5): 393–402. (in Chinese) doi: 10.3321/j.issn:1006-3021.2006.05.002
|
[3] |
ZHANG J Y, DAI M H, WANG L C, et al. The challenge and future of rocky desertification control in Karst areas in Southwest China[J]. Solid Earth, 2016, 7(1): 83–91. doi: 10.5194/se-7-83-2016
|
[4] |
王明刚. 粤北石漠化土地水土流失过程的人工降雨模拟试验研究[D]. 广州: 华南师范大学, 2007.
WANG Ming-gang. Experimental Study on Artificial Rainfall Simulation of Soil and Water Loss in Rock Desertification Land in Northern Guangdong[D]. Guangzhou: South China Normal University, 2007. (in Chinese)
|
[5] |
刘正堂, 戴全厚, 倪九派, 等. 喀斯特地区裸坡面土壤侵蚀的人工模拟降雨试验研究[J]. 水土保持学报, 2013, 27(5): 12–16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201305003.htm
LIU Zheng-tang, DAI Quan-hou, NI Jiu-pai, et al. Bare slope soil erosion experimental research under the condition of artificial rainfall precipitation in Karst area[J]. Journal of Soil and Water Conservation, 2013, 27(5): 12–16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201305003.htm
|
[6] |
高翔, 蔡雄飞, 王济, 等. 喀斯特地貌不同坡度下土壤侵蚀经验模型研究[J]. 贵州: 贵州农业科学, 2013(7): 111–115. doi: 10.3969/j.issn.1001-3601.2013.07.031
GAO Xiang, XAI Xiong-fei, WANG Ji, et al. Study on soil erosion model under different slope in Southeast Karst mountain area[J]. Guizhou Agricultural Sciences, 2013(7): 111–115. (in Chinese) doi: 10.3969/j.issn.1001-3601.2013.07.031
|
[7] |
CAI X F, JI WAN Y L, et al. Laboratorial simulation on soil erosion under different vegetation coverage in Southwest Karst Area, [C]// 2011 International Symposium on Water Resource and Envicronmental Protection. May 20-22, 2011, Xi'an. China. IEEE, 2010: 2010–2014.
|
[8] |
DAI Q H, PENG X, YANG Z, et al. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area[J]. CATENA, 2017, 152: 218–226. doi: 10.1016/j.catena.2017.01.013
|
[9] |
李玲, 周运超, 尹先平. 不同降雨模式下石灰土坡地地表侵蚀特征[J]. 中国水土保持科学, 2013, 11(6): 1–6. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201306001.htm
|
[10] |
XIONG X F, LI J H, ZHANG T, et al. Simulation of coupled transport of soil moisture and heat in a typical Karst rocky desertification area, Yunnan Province, Southwest China[J]. Environmental Science and Pollution Research, 2021, 28: 4716–4730. doi: 10.1007/s11356-020-10784-2
|
[11] |
李小龙, 王雪冬. 山东废弃石灰岩矿山地质环境特征与治理恢复探索[J]. 地质与资源, 2018, 27(1): 89–92. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201801012.htm
|
[12] |
MA T S, DENG X, CHEN L, et al. The soil properties and their effects on plant diversity in different degrees of rocky desertification[J]. Science of the Total Environment, 2020, 736: 139667.
|
[13] |
刘琦, 王涵, 廖启迪, 等. 一种表层岩溶裂隙带土壤地表流失和地下漏失模拟装置: CN112611850A[P]. 2021-04-06.
|
[14] |
肖军华, 刘建坤, 彭丽云, 等. 黄河冲积粉土的密实度及含水率对力学性质影响[J]. 岩土力学, 2008, 29(2): 409–414. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802038.htm
|
[1] | LIU Qi, DENG Dapeng, LU Kewen. Simulation of underground leakage process of soil on Karst slopes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 166-170. DOI: 10.11779/CJGE2023S10041 |
[2] | LUO Zhao-gang, WANG Shi-ji, ZHANG Ji-wei, YANG Zhen-bei. Thickness effect on crack evolution of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1922-1930. DOI: 10.11779/CJGE202010018 |
[3] | ZENG Hao, TANG Chao-sheng, LIU Chang-li, LIN Luan, WANG Dong-wei, SHI Bin. Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553. DOI: 10.11779/CJGE201903017 |
[4] | DI Guo-en, HUANG Bing-de, WANG Wei-dong. Design and application of constant thickness cement-soil wall constructed by TRD method in deep excavations with sensitive surroundings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 25-30. DOI: 10.11779/CJGE2014S1004 |
[5] | WANG Chuan-ying, HAN Zeng-qiang, WANG Yu-shan. Detection method for bottom sediment thickness of bored piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1212-1215. |
[6] | WANG Wei-dong, DI Guo-en. Engineering practices of constant thickness steel cement-soil wallconstructed by TRD method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 628-633. |
[7] | WU Guo-ming, ZHANG Zhao-xiong, XIE Zhao-liang. Application of construction technology of steel cement-soil wall with uniform hickness in rock-socketed deep excavations in complex soil strata[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 393-397. |
[8] | Programming development and application of zero-thickness interface elements to the limit analysis of soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8). |
[9] | Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[10] | LI Yuejian, CHEN Yunmin, LING Daosheng. Study on the critical depth and minimal thickness of static piling[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 584-587. |