• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508
Citation: LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508

Mixing workability and strength enhancement of cement-stabilized clay with tung oil

More Information
  • Received Date: December 04, 2022
  • Available Online: April 09, 2024
  • When passing through the clay stratum with the plastic index more than 25 and the water content less than 50%, the clay is easy to adhere to the mixing blade and rotating rod, indicating significant influences on the mixing workability and engineering performance of the cement-stabilized soil by using the deep mixing method. Tung oil, a kind of dry natural vegetable oil with excellent hydrophobic and lubricating properties, has been widely used to treat the raw soils as the construction materials. To investigate the influences of the tung oil on the mixing workability and strength of cement-stabilized clays, the Atterberg limit, empirical stickiness ratio and unconfined compressive strength are measured. Furthermore, the scanning electron microscopy, mercury intrusion porosimetry and Fourier infrared spectroscopy are involved to explore the microscopic mechanism of the tung oil on the cement-stabilized clays. The results reveal that the incorporation of the tung oil can significantly improve the workability during the mixing process, and the optimal addition of the tung oil accounts for 4.0% of the dry clay. For the homogeneous stabilized clay with the tung oil, the strength can be enhanced for about 30%. The tung oil has a good application prospect for the in-situ stabilization by the deep mixing method, which is an important reference to overcome the mixing difficulty in this kind of clay strata.
  • [1]
    邓婷婷, 刘行, 张峰, 等. 固化/改性土搅拌均匀性测试与评价方法[J]. 东南大学学报(自然科学版), 2022, 52(4): 697-703. doi: 10.3969/j.issn.1001-0505.2022.04.010.

    DENG Tingting, LIU Hang, ZHANG Feng, et al. Test and evaluation method for mixing uniformity of soil stabilization/modification[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4): 697-703. (in Chinese) doi: 10.3969/j.issn.1001-0505.2022.04.010.
    [2]
    陈富, 李海涛. 黄骅港地区深层水泥土搅拌桩施工工艺研究[J]. 岩土工程学报, 2015, 37(增刊1): 156-160. doi: 10.11779/CJGE2015S1030

    CHEN Fu, LI Haitao. Construction technology of cement deep mixing piles in Huanghua Port region[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 156-160. (in Chinese) doi: 10.11779/CJGE2015S1030
    [3]
    陈晋中, 刘凤翰, 刘松玉. 双向水泥土搅拌桩技术及常见施工问题处理[J]. 建筑技术, 2011, 42(9): 808-810. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI201109013.htm

    CHEN Jinzhong, LIU Fenghan, LIU Songyu. Technology of bidirectional deep mixing cement-soil columns and treatment of common construction problems[J]. Architecture Technology, 2011, 42(9): 808-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJI201109013.htm
    [4]
    储诚富, 洪振舜, 刘松玉, 等. 用似水灰比对水泥土无侧限抗压强度的预测[J]. 岩土力学, 2005, 26(4): 645-649. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504030.htm

    CHU Chengfu, HONG Zhenshun, LIU Songyu, et al. Prediction of unconfined compressive strength of cemented soils with quasi-water-cement ratio[J]. Rock and Soil Mechanics, 2005, 26(4): 645-649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504030.htm
    [5]
    SZYMKIEWICZ F, TAMGA F S, LE KOUBY A, et al. Optimization of strength and homogeneity of deep mixing material by the determination of workability limit and optimum water content[J]. Canadian Geotechnical Journal, 2013, 50(10): 1034-1043. doi: 10.1139/cgj-2012-0327
    [6]
    SALVATORE E, MODONI G, SPAGNOLI G, et al. Conditioning clayey soils with a dispersant agent for deep soil mixing application: laboratory experiments and artificial neural network interpretation[J]. Acta Geotechnica, 2022, 17(11): 5073-5087. doi: 10.1007/s11440-022-01505-9
    [7]
    TERASHI M. Theme lecture: deep mixing method-brief state of the art[C]// 14th International Conference on Soil Mechanics and Foundation Engineering. Hamburg, 1997: 2475-2478.
    [8]
    NOZU M, SAKAKIBARA M, ANH N T. Securing of in-situ cement mixing quality for the expansive soil with the Montmorillonite inclusion[C]// 2015 DFI Deep Mixing Conference. San Francisco, 2015: 845-852.
    [9]
    SPAGNOLI G, SCHELLER P, DOHERTY P. In situ and laboratory tests on a novel offshore mixed-in-place pile for oil and gas platforms[J]. Journal of Petroleum Science and Engineering, 2016, 145: 502-509. doi: 10.1016/j.petrol.2016.06.027
    [10]
    LARSSON S. Mixing Processes for Ground Improvement by Deep Mixing[D]. Stockholm: Royal Institute of Technology, 2003.
    [11]
    CHAN C M. Influence of mix uniformity on the induced solidification of dredged marine clay[J]. Environmental Earth Sciences, 2014, 71(3): 1061-1071. doi: 10.1007/s12665-013-2510-0
    [12]
    彭小芹, 曹春鹏, 季晓丽, 等. 防水剂对石灰偏高岭土修补砂浆性能的影响[J]. 湖南大学学报(自然科学版), 2016, 43(6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201606014.htm

    PENG Xiaoqin, CAO Chunpeng, JI Xiaoli, et al. Effect of water-repellent admixtures on repair mortars made of lime and metakaolin[J]. Journal of Hunan University (Natural Sciences), 2016, 43(6): 83-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201606014.htm
    [13]
    唐晓武, 林廷松, 罗雪, 等. 利用桐油和糯米汁改善黏土的强度及环境土工特性[J]. 岩土工程学报, 2007, 29(9): 1324-1329. http://cge.nhri.cn/cn/article/id/12604

    TANG Xiaowu, LIN Tingsong, LUO Xue, et al. Strength and geoenvironmental properties of clay improved by tung oil and sticky rice juice[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1324-1329. (in Chinese) http://cge.nhri.cn/cn/article/id/12604
    [14]
    LIN H, LIU F Y, LOURENCO S D N, et al. Stabilization of an earthen material with Tung oil: compaction, strength and hydrophobic enhancement[J]. Construction and Building Materials, 2021, 290: 123213. doi: 10.1016/j.conbuildmat.2021.123213
    [15]
    FANG S, ZHANG H, ZHANG B, et al. A study of Tung-oil-lime putty-A traditional lime based mortar[J]. International Journal of Adhesion and Adhesives, 2014, 48: 224-230. doi: 10.1016/j.ijadhadh.2013.09.034
    [16]
    TANG X W, YU Y, ZHOU L P, et al. Study on strength and permeability of silt soils improving by tung oil and sticky rice juice[J]. Advances in Civil Engineering, 2020: 8852998.
    [17]
    ZUMSTEG R, PUZRIN A M. Stickiness and adhesion of conditioned clay pastes[J]. Tunnelling and Underground Space Technology, 2012, 31: 86-96. doi: 10.1016/j.tust.2012.04.010
    [18]
    BALL R P A, YOUNG D J, ISAACSON J, et al. Research in soil conditioning for EPB tunneling through difficult soils[C]// Rapid Excavation and Tunneling Conference. Las Vegas, 2009: 320-333.
    [19]
    LIU L, DENG T T, DENG Y F, et al. Stabilization nature and unified strength characterization for cement-based stabilized soils[J]. Construction and Building Materials, 2022, 336: 127544. doi: 10.1016/j.conbuildmat.2022.127544
    [20]
    唐晓武, 王艳, 林廷松, 等. 桐油和糯米汁改良土体防渗性和耐久性的研究[J]. 岩土工程学报, 2010, 32(3): 351-355. http://cge.nhri.cn/cn/article/id/12414

    TANG Xiaowu, WANG Yan, LIN Tingsong, et al. Permeability and durability of soils improved by tung oil and sticky rice juice[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 351-355. (in Chinese) http://cge.nhri.cn/cn/article/id/12414
    [21]
    ZHANG H Y, ZHU S B, LI M, et al. Water repellency of monument soil treated by tung oil[J]. Geotechnical and Geological Engineering, 2016, 34(1): 205-216. doi: 10.1007/s10706-015-9939-8
    [22]
    KHAMEHCHIYAN M, CHARKHABI A H, TAJIK M. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils[J]. Engineering Geology, 2007, 89(3/4): 220-229.
    [23]
    LIU Z B, LIU S Y, CAI Y. Engineering property test of kaolin clay contaminated by diesel oil[J]. Journal of Central South University, 2015, 22(12): 4837-4843.
    [24]
    LOURENCO S D N, SAULICK Y, ZHENG S, et al. Soil wettability in ground engineering: fundamentals, methods, and applications[J]. Acta Geotechnica, 2018, 13(1): 1-14.
    [25]
    LIU D, SANDEEP C S, SENETAKIS K, et al. Micromechanical behaviour of a polymer-coated sand[J]. Powder Technology, 2019, 347: 76-84.
    [26]
    LU Y Q, MILLER J D. Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy[J]. Journal of Colloid and Interface Science, 2002, 256(1): 41-52.

Catalog

    Article views (340) PDF downloads (115) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return