Citation: | DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007 |
[1] |
POON C S, KOU S C, LAM L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials, 2006, 20: 858-865.
|
[2] |
WILD S, KHATIB J M, JONES A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin[J]. Cement and Concrete Research, 1996 26(10): 1537-1544.
|
[3] |
AMBROISE J, MAXIMILIEN S, PERA J. Properties of metakaolin blended cements[J]. Advanced Cement Research,1994, 1(4): 161-168.
|
[4] |
LI Z J, DING Z. Property improvement of Portland cement by incorporating with metakaolin and slag[J]. Cement and Concrete Research, 2003, 33(4): 579-584.
|
[5] |
LAGIER F, KURTIS K E. Influence of Portland cement composition on early age reactions with metakaolin[J]. Cement and Concrete Research, 2007, 37: 1411-1417.
|
[6] |
GESOGLU E G, MERMERDAS K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin[J]. Materials and Structures, 2008, 41: 937-949.
|
[7] |
SHEKARCHI M, BONAKDAR A, BAKHSHI M, et al. Transport properties in metakaolin blended concrete[J]. Construction and Building Materials, 2010, 24(11): 2217-2223.
|
[8] |
KHATIB J M, WILD S. Pore size distribution of metakaolin paste[J]. Cement and Concrete Research, 1996, 26(10): 1545-1553.
|
[9] |
POON C S, LAM L, KOU S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes[J]. Cement and Concrete Research, 2001, 31: 1301-1306.
|
[10] |
FRIAS M, RAJOS M I, CABRERA J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars[J]. Cement and Concrete Research, 2000, 30: 209-216.
|
[11] |
JUSTICE J M, KURTIS K E. Influence of metakaolin surface area on properties of cement-based materials[J]. Journal of Materials in Civil Engineering, 2007, 19: 762-771.
|
[12] |
GRUBER K A, RAMLOCHAN T, BODDY A, et al. Increasing concrete durability with high-reactivity metakaolin[J]. Cement & Concrete Composites, 2001, 23: 479-484.
|
[13] |
BATIS G, PANTAZOPOULOU P, TSIVILIS S, et al. The effect of metakaolin on the corrosion behavior of cement mortars[J]. Cement & Concrete Composites, 2005, 27: 125-130.
|
[14] |
KIM H S, LEE S H, MOON H Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Construction and Building Materials, 2007, 21: 1229-1237.
|
[15] |
POLOMO A, BLANCO M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin[J]. Cement and Concrete Research, 1999, 29: 997-1004.
|
[16] |
ALAKHRAS N M Durability of metakaolin concrete to sulfate attack[J]. Cement and Concrete Research, 2006, 36: 1727-1734.
|
[17] |
刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京. 中国建筑工业出版社, 2006. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and application of dry jet mixing composite foundation[M]. Beijing: China Architecture & Building Press, 2006. (in Chinese))
|
[18] |
储诚富, 李小春, 邓永锋, 等. 偏高岭土对水泥改性海相黏土力学性能的影响[J]. 岩土工程学报, 2013, 35(增刊1): 170-174. (CHU Cheng-fu, LI Xiao-chun, DENG Yong-feng, et al. Influence of metakaolin on mechanical properties of cement-modified marine soft soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 170-174. (in Chinese))
|
[19] |
UDDIN K. Strength and deformation behavior of cement treated Bangkok clay[D]. Bangkok: Asian Institute of Technology, 1994.
|
[20] |
BERGADO D T, ANDERSON L R, MIURA N, et al. Soft ground improvement in lowland and other environments[M]. Virginia: American Society of Civil Engineers Press, 1996.
|
[21] |
HOPRIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85-98.
|
[22] |
LORENZO G A, BERGADO D T. Fundamental characteristics of cement-admixed clay in deep mixing[J]. Journal of Materials in Civil Engineering , 2006, 18(2): 161-174.
|
[23] |
LORENZO G A, BERGADO D T. Fundamental parameters of cement-admixed clay-new approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1042-1050.
|
[24] |
ZHANG D W, CAO Z G, FAN L B, et al. Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay[J]. Journal of Southeast University, 2013, 29(1): 79-83.
|
[25] |
ZHANG D W, CHEN L, LIU S Y. Key parameters controlling electrical resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19: 2991-2998.
|
[26] |
CONSOLI N C, FOPPA D, FESTUGATO L, et al. Key paramenters for strength control of artificially cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 197-205.
|
[27] |
CONSOLI N C, CRUZ R C, FLOSS M F, et al. Parameters controlling tensile and compressive strength of artificially cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 759-763.
|
[1] | FU Haiqing, YI Jixiang, FENG Luwei, YANG Jiyuan. In-situ liquefaction tests considering effects of overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 558-566. DOI: 10.11779/CJGE20230096 |
[2] | Development and application of in-situ testing system for anisotropic deformation in loess pores[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240283 |
[3] | LU Hong-wei, JIANG Gang, WANG Hao, HONG Xin, SHI Chun-le, GONG Hong-wei, LIU Wei-qing. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. DOI: 10.11779/CJGE201702018 |
[4] | GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. DOI: 10.11779/CJGE201406014 |
[5] | LOU Xiao-ming, FANG Cheng-jie, ZHU Ya-juan, XU Shi-long. Improvement effect of vacuum preloading evaluated by in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 511-514. |
[6] | LIU Xue-yan, YUAN Da-jun, GUO Xiao-hong. Test and application of in-situ slurry fracturing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1901-1907. |
[7] | IIn-situ tests on lining system of double-arch tunnel with shallow large section and span[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10). |
[8] | HAN Xuan, ZHANG Nairui. In-situ tests on load transfer mechanism of group piled foundation in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 74-80. |
[9] | LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510. |
[10] | ZHANG Mingju, GUO Zhongxian. Research on behaviors of soil nailing by field test[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 319-323. |