Citation: | LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409 |
[1] |
张佳兴, 裴向军, 韦璐. 硫酸盐渍土水泥加固盐胀抑制剂研究[J]. 岩土工程学报, 2018, 40(1): 155-161. doi: 10.11779/CJGE201801016
ZHANG Jiaxing, PEI Xiangjun, WEI Lu. Salt expansion inhibitors for sulphated salty soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 155-161. (in Chinese) doi: 10.11779/CJGE201801016
|
[2] |
郑子昂, 张卫兵, 钱晓明, 等. 固化剂处理硫酸盐渍土的盐胀与溶陷特性研究[J]. 工程勘察, 2017, 45(3): 1-5, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201703001.htm
ZHENG Ziang, ZHANG Weibing, QIAN Xiaoming, et al. Study on salt expansion and collapsibility characteristics of solidified sulphate salty soil with curing agent[J]. Geotechnical Investigation & Surveying, 2017, 45(3): 1-5, 28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201703001.htm
|
[3] |
温利强, 杨成斌, 李士奎. 中国西北地区盐渍土分布及危害[J]. 工程与建设, 2010, 24(5): 585-587. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201005003.htm
WEN Liqiang, YANG Chengbin, LI Shikui. Distribution and harm of saline soil in Northwest of China[J]. Engineering and Construction, 2010, 24(5): 585-587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201005003.htm
|
[4] |
王鹏程, 尧俊凯, 陈锋, 等. 无砟轨道路基上拱原因试验研究[J]. 铁道建筑, 2018, 58(1): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm
WANG Pengcheng, YAO Junkai, CHEN Feng, et al. Experimental study on heaving cause of ballastless track subgrade[J]. Railway Engineering, 2018, 58(1): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm
|
[5] |
梁俊怡. 滨海地区公路盐渍土改良技术试验[J]. 广东公路交通, 2018, 44(5): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT201805012.htm
LIANG Junyi. Research on improvement technology for saline soil subgrade of coastal highway[J]. Guangdong Highway Communications, 2018, 44(5): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT201805012.htm
|
[6] |
魏唐中, 李佩宁. 滨海地区盐渍土改良机理微观研究[J]. 公路与汽运, 2012(6): 127-130, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201206034.htm
WEI Tangzhong, LI Peining. Microscopic study on improvement mechanism of saline soil in coastal areas[J]. Highways & Automotive Applications, 2012(6): 127-130, 139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201206034.htm
|
[7] |
PUPPALA A J, GRIFFIN J A, HOYOS L R, et al. Studies on sulfate-resistant cement stabilization methods to address sulfate-induced soil heave[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 391-402. doi: 10.1061/(ASCE)1090-0241(2004)130:4(391)
|
[8] |
CHESHOMI A, ESHAGHI A, HASSANPOUR J. Effect of lime and fly ash on swelling percentage and Atterberg limits of sulfate-bearing clay[J]. Applied Clay Science, 2017, 135: 190-198. doi: 10.1016/j.clay.2016.09.019
|
[9] |
PUPPALA A J, INTHARASOMBAT N, VEMPATI R K. Experimental studies on ettringite-induced heaving in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(3): 325-337. doi: 10.1061/(ASCE)1090-0241(2005)131:3(325)
|
[10] |
PUPPALA A J, CONGRESS S S C, TALLURI N, et al. Sulfate-heaving studies on chemically treated sulfate-rich geomaterials[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 04019076. doi: 10.1061/(ASCE)MT.1943-5533.0002729
|
[11] |
张傲宁. 水泥固化硫酸盐渍土盐胀机理和性能调控研究[D]. 南京: 东南大学, 2020.
ZHANG Aoning. Study on Salt Expansion Mechanism and Performance Control of Cement Solidified Sulfate Salty Soil[D]. Nanjing: Southeast University, 2020. (in Chinese)
|
[12] |
HUNTER D. Lime-induced heave in sulfate-bearing clay soils[J]. Journal of Geotechnical Engineering, 1988, 114(2): 150-167. doi: 10.1061/(ASCE)0733-9410(1988)114:2(150)
|
[13] |
MCCARTHY M J, CSETENYI L J, SACHDEVA A, et al. Fly ash influences on sulfate-heave in lime-stabilised soils[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(3): 147-158. doi: 10.1680/grim.10.00016
|
[14] |
YAO K, WANG W, LI N, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil[J]. Construction and Building Materials, 2019, 206: 160-168. doi: 10.1016/j.conbuildmat.2019.01.221
|
[15] |
SONG S Q, JIANG L H, JIANG S B, et al. The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature[J]. Construction and Building Materials, 2018, 164: 663-671. doi: 10.1016/j.conbuildmat.2018.01.011
|
[16] |
WANG W, ZHANG C, LI N, et al. Characterisation of nano magnesia–cement-reinforced seashore soft soil by direct-shear test[J]. Marine Georesources & Geotechnology, 2019, 37(8): 989-998.
|
[17] |
YI Y, LISKA M, AL-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274. doi: 10.1061/(ASCE)MT.1943-5533.0000806
|
[18] |
LI W T, YI Y L, PUPPALA A J. Utilization of carbide slag-activated ground granulated blastfurnace slag to treat gypseous soil[J]. Soils and Foundations, 2019, 59(5): 1496-1507. doi: 10.1016/j.sandf.2019.06.002
|
[19] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[20] |
ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate[J]. Cement and Concrete Research, 2014, 65: 8-14. doi: 10.1016/j.cemconres.2014.07.001
|
[21] |
庄心善, 寇强. 海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析[J]. 水文地质工程地质, 2022, 49(2): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202011.htm
ZHUANG Xinshan, KOU Qiang. Dynamic stress and microanalyses of the cement-soil modified by nano-SiO2 in the seawater corrosive environment[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 86-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202011.htm
|
[22] |
CHAKRABORTY S, PUPPALA A J, BISWAS N. Role of crystalline silica admixture in mitigating ettringite-induced heave in lime-treated sulfate-rich soils[J]. Géotechnique, 2022, 72(5): 438-454. doi: 10.1680/jgeot.20.P.154
|
[23] |
XING H F, YANG X M, XU C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103(1/2): 33-38.
|
[24] |
HEKAL E E, KISHAR E, MOSTAFA H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427. doi: 10.1016/S0008-8846(02)00801-3
|
[1] | LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508 |
[2] | Influence of thermal ageing time on barrier properties of bentonite as a buffer material at high temperature conditions and its micro-mechanism[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240418 |
[3] | ZHANG Zhihong, YANG Haowen, ZHENG Jiuzhou. Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617 |
[4] | HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005 |
[5] | WU Hao-liang, BO Yu-ling, DU Yan-jun, WEI Ming-li, XUE Qiang. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. DOI: 10.11779/CJGE2019S1035 |
[6] | WANG Dong-xing, HE Fu-jin, ZHU Jia-ye. Performance and mechanism of CO2 carbonated slag-CaO- MgO-solidified soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2197-2206. DOI: 10.11779/CJGE201912004 |
[7] | WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012 |
[8] | ZHANG Fu-guang, JIANG Ming-jing. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1424-1432. DOI: 10.11779/CJGE201808007 |
[9] | DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007 |
[10] | ZHANG Xian-wei, KONG Ling-wei, LI Jun, YANG Ai-wu. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. DOI: 10.11779/CJGE201408005 |