• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
Citation: LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409

Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement

More Information
  • Received Date: May 08, 2023
  • Available Online: May 05, 2024
  • The sulfate-bearing (saline) soil may easily cause geotechnical disasters, such as subsidence, expansion and foundation corrosion. However, stabilizing the sulfate-bearing soil by cement can lead to the formation of expansive mineral-ettringite, resulting in soil swelling, strength loss and poor durability. To avoid the aforementioned problems, the magnesium oxide (MgO) is used to partially replace cement (MgO combined with cement) in the stabilization treatment of the sulfate-bearing soil (gypseous soil). By conducting the tests of vertical swelling, unconfined compressive strength (UCS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR), the effects of the ratio of MgO to cement on the swelling and mechanical properties of the stabilized soil are explored. Furthermore, it reveals the micro-mechanism of the sulfate-bearing soil stabilized with MgO and cement (MgO-cement). The results show that as the ratio of MgO to cement increases, the total swelling percentage of the stabilized soil first decreases and then increases, while the UCS has an opposite trend, first increasing and then decreasing. In terms of the micro-mechanism, the addition of an appropriate amount of MgO can reduce the formation of ettringite. However, when an excess of MgO is added, the formation of magnesium silicate hydrate (MSH) inhibits the formation of calcium silicate hydrate (CSH), thereby weakening the effects of CSH. In summary, MgO: cement= 0.5∶9.5 is considered to be an optimal ratio of MgO to cement for stabilizing the sulfate-bearing soils.
  • [1]
    张佳兴, 裴向军, 韦璐. 硫酸盐渍土水泥加固盐胀抑制剂研究[J]. 岩土工程学报, 2018, 40(1): 155-161. doi: 10.11779/CJGE201801016

    ZHANG Jiaxing, PEI Xiangjun, WEI Lu. Salt expansion inhibitors for sulphated salty soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 155-161. (in Chinese) doi: 10.11779/CJGE201801016
    [2]
    郑子昂, 张卫兵, 钱晓明, 等. 固化剂处理硫酸盐渍土的盐胀与溶陷特性研究[J]. 工程勘察, 2017, 45(3): 1-5, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201703001.htm

    ZHENG Ziang, ZHANG Weibing, QIAN Xiaoming, et al. Study on salt expansion and collapsibility characteristics of solidified sulphate salty soil with curing agent[J]. Geotechnical Investigation & Surveying, 2017, 45(3): 1-5, 28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201703001.htm
    [3]
    温利强, 杨成斌, 李士奎. 中国西北地区盐渍土分布及危害[J]. 工程与建设, 2010, 24(5): 585-587. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201005003.htm

    WEN Liqiang, YANG Chengbin, LI Shikui. Distribution and harm of saline soil in Northwest of China[J]. Engineering and Construction, 2010, 24(5): 585-587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJDA201005003.htm
    [4]
    王鹏程, 尧俊凯, 陈锋, 等. 无砟轨道路基上拱原因试验研究[J]. 铁道建筑, 2018, 58(1): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm

    WANG Pengcheng, YAO Junkai, CHEN Feng, et al. Experimental study on heaving cause of ballastless track subgrade[J]. Railway Engineering, 2018, 58(1): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm
    [5]
    梁俊怡. 滨海地区公路盐渍土改良技术试验[J]. 广东公路交通, 2018, 44(5): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT201805012.htm

    LIANG Junyi. Research on improvement technology for saline soil subgrade of coastal highway[J]. Guangdong Highway Communications, 2018, 44(5): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGT201805012.htm
    [6]
    魏唐中, 李佩宁. 滨海地区盐渍土改良机理微观研究[J]. 公路与汽运, 2012(6): 127-130, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201206034.htm

    WEI Tangzhong, LI Peining. Microscopic study on improvement mechanism of saline soil in coastal areas[J]. Highways & Automotive Applications, 2012(6): 127-130, 139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201206034.htm
    [7]
    PUPPALA A J, GRIFFIN J A, HOYOS L R, et al. Studies on sulfate-resistant cement stabilization methods to address sulfate-induced soil heave[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 391-402. doi: 10.1061/(ASCE)1090-0241(2004)130:4(391)
    [8]
    CHESHOMI A, ESHAGHI A, HASSANPOUR J. Effect of lime and fly ash on swelling percentage and Atterberg limits of sulfate-bearing clay[J]. Applied Clay Science, 2017, 135: 190-198. doi: 10.1016/j.clay.2016.09.019
    [9]
    PUPPALA A J, INTHARASOMBAT N, VEMPATI R K. Experimental studies on ettringite-induced heaving in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(3): 325-337. doi: 10.1061/(ASCE)1090-0241(2005)131:3(325)
    [10]
    PUPPALA A J, CONGRESS S S C, TALLURI N, et al. Sulfate-heaving studies on chemically treated sulfate-rich geomaterials[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 04019076. doi: 10.1061/(ASCE)MT.1943-5533.0002729
    [11]
    张傲宁. 水泥固化硫酸盐渍土盐胀机理和性能调控研究[D]. 南京: 东南大学, 2020.

    ZHANG Aoning. Study on Salt Expansion Mechanism and Performance Control of Cement Solidified Sulfate Salty Soil[D]. Nanjing: Southeast University, 2020. (in Chinese)
    [12]
    HUNTER D. Lime-induced heave in sulfate-bearing clay soils[J]. Journal of Geotechnical Engineering, 1988, 114(2): 150-167. doi: 10.1061/(ASCE)0733-9410(1988)114:2(150)
    [13]
    MCCARTHY M J, CSETENYI L J, SACHDEVA A, et al. Fly ash influences on sulfate-heave in lime-stabilised soils[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(3): 147-158. doi: 10.1680/grim.10.00016
    [14]
    YAO K, WANG W, LI N, et al. Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil[J]. Construction and Building Materials, 2019, 206: 160-168. doi: 10.1016/j.conbuildmat.2019.01.221
    [15]
    SONG S Q, JIANG L H, JIANG S B, et al. The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature[J]. Construction and Building Materials, 2018, 164: 663-671. doi: 10.1016/j.conbuildmat.2018.01.011
    [16]
    WANG W, ZHANG C, LI N, et al. Characterisation of nano magnesia–cement-reinforced seashore soft soil by direct-shear test[J]. Marine Georesources & Geotechnology, 2019, 37(8): 989-998.
    [17]
    YI Y, LISKA M, AL-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274. doi: 10.1061/(ASCE)MT.1943-5533.0000806
    [18]
    LI W T, YI Y L, PUPPALA A J. Utilization of carbide slag-activated ground granulated blastfurnace slag to treat gypseous soil[J]. Soils and Foundations, 2019, 59(5): 1496-1507. doi: 10.1016/j.sandf.2019.06.002
    [19]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [20]
    ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate[J]. Cement and Concrete Research, 2014, 65: 8-14. doi: 10.1016/j.cemconres.2014.07.001
    [21]
    庄心善, 寇强. 海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析[J]. 水文地质工程地质, 2022, 49(2): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202011.htm

    ZHUANG Xinshan, KOU Qiang. Dynamic stress and microanalyses of the cement-soil modified by nano-SiO2 in the seawater corrosive environment[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 86-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202202011.htm
    [22]
    CHAKRABORTY S, PUPPALA A J, BISWAS N. Role of crystalline silica admixture in mitigating ettringite-induced heave in lime-treated sulfate-rich soils[J]. Géotechnique, 2022, 72(5): 438-454. doi: 10.1680/jgeot.20.P.154
    [23]
    XING H F, YANG X M, XU C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology, 2009, 103(1/2): 33-38.
    [24]
    HEKAL E E, KISHAR E, MOSTAFA H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427. doi: 10.1016/S0008-8846(02)00801-3
  • Related Articles

    [1]LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508
    [2]Influence of thermal ageing time on barrier properties of bentonite as a buffer material at high temperature conditions and its micro-mechanism[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240418
    [3]ZHANG Zhihong, YANG Haowen, ZHENG Jiuzhou. Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617
    [4]HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005
    [5]WU Hao-liang, BO Yu-ling, DU Yan-jun, WEI Ming-li, XUE Qiang. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. DOI: 10.11779/CJGE2019S1035
    [6]WANG Dong-xing, HE Fu-jin, ZHU Jia-ye. Performance and mechanism of CO2 carbonated slag-CaO- MgO-solidified soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2197-2206. DOI: 10.11779/CJGE201912004
    [7]WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012
    [8]ZHANG Fu-guang, JIANG Ming-jing. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1424-1432. DOI: 10.11779/CJGE201808007
    [9]DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007
    [10]ZHANG Xian-wei, KONG Ling-wei, LI Jun, YANG Ai-wu. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. DOI: 10.11779/CJGE201408005

Catalog

    Article views (441) PDF downloads (98) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return