• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhihong, YANG Haowen, ZHENG Jiuzhou. Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617
Citation: ZHANG Zhihong, YANG Haowen, ZHENG Jiuzhou. Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1963-1970. DOI: 10.11779/CJGE20220617

Experimental study and micro-mechanism analysis on chemico-osmotic membrane behavior of kaolin-bentonite

More Information
  • Received Date: May 16, 2022
  • Available Online: March 04, 2023
  • The semipermeable membrane behavior of clay materials can significantly delay contaminant diffusion, which is of great importance to evaluating the service performance of barriers in various landfills effectively. Using the self-made rigid wall test device, a series of chemico-osmotic tests on the kaolin-bentonite (K-B) mixtures with bentonite content (5%~60%) are carried out, and the variation trends of chemico-osmotic efficiency coefficients of K-B specimens are determined. Meanwhile, the influence mechanism of membrane effect behavior is revealed through the scanning electron microscope. The results show that the change process of chemico-osmotic efficiency coefficient can be divided into three stages, slow increase (< 30%), sharp increase (30%~40%) and steady condition (> 40%). When the content of bentonite increases from 5% to 60%, the corresponding chemico-osmotic efficiency coefficient increases from 0.002 to 0.197. In addition, the increase of bentonite content causes the pore structure change of K-B specimens, the number of large holes decreases, and the number of small holes gradually increases. Furthermore, the aperture perimeter of holes increases, indicating that the variation of pore number and aperture perimeter is the internal reason for leading to the change of chemico-osmotic membrane behavior with bentonite content.
  • [1]
    SHACKELFORD C D, SCALIA J. Semipermeable membrane behavior in bentonite-based barriers: Past, present, and future[C]// GeoVancouver 2016, 69th Canadian Geotechnical Society. Richmond, BC, Canada, 2016.
    [2]
    SCALIA J, BOHNHOFF G L, SHACKELFORD C D, et al. Enhanced bentonites for containment of inorganic waste leachates by GCLs[J]. Geosynthetics International, 2018, 25(4): 392-411. doi: 10.1680/jgein.18.00024
    [3]
    SHACKELFORD C D, LEE J M. The destructive role of diffusion on clay membrane behavior[J]. Clays and Clay Minerals, 2003, 51(2): 186-196. doi: 10.1346/CCMN.2003.0510209
    [4]
    HENNING J T, EVANS J C, SHACKELFORD C D. Membrane behavior of two backfills from field-constructed soil-bentonite cutoff walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1243-1249. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1243)
    [5]
    DOMINIJANNI A, MANASSERO M. Modelling Osmosis and Solute Transport Through Clay Membrane Barriers[M]. Reston, Va: Waste Containment and Remediation, Geotech Spec Publ, ASCE, 2005: 1-12.
    [6]
    SHACKELFORD C. Membrane behavior in engineered bentonite-based containment barriers: State of the art[C]// Proceedings of the International Symposium on Coupled Phenomena in Environmental Geotechnics. Torino, Italy, 2013.
    [7]
    傅贤雷, 杜延军, 沈胜强, 等. PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3669-3675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm

    FU Xianlei, DU Yanjun, SHEN Shengqiang, et al. Chemico-osmotic membrane behavior and diffusive properties of PAC amended bentonite/sand vertical cutoff wall backfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3669-3675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm
    [8]
    李双杰, 伍浩良, 傅贤雷, 等. 氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应[J]. 岩土工程学报, 2022, 44(6): 1078-1086. doi: 10.11779/CJGE202206012

    LI Shuangjie, WU Haoliang, FU Xianlei, et al. Experimental study on chemico- osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1078-1086. (in Chinese) doi: 10.11779/CJGE202206012
    [9]
    VAN I P O, PASQUALINI E. Consolidation, Contaminant Transport and Chemico-Osmotic Effects in Liner Materials[D]. Ancona: University of Ancona, 2002.
    [10]
    KANG J B, SHACKELFORD C D. Membrane behavior of compacted clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1368-1382. doi: 10.1061/(ASCE)GT.1943-5606.0000358
    [11]
    SAINDON R, WHITWORTH T M. Hyperfiltration of nacl solutions using a simulated clay/sand mixture at low compaction pressures[J]. Aquatic Geochemistry, 2005, 11(4): 433-444. doi: 10.1007/s10498-005-2041-8
    [12]
    TANG Q, KATSUMI T, INUI T, et al. Membrane behavior of bentonite-amended compacted clay[J]. Soils and Foundations, 2014, 54(3): 329-344. doi: 10.1016/j.sandf.2014.04.019
    [13]
    周盈. 反渗透条件下黏性土中溶质运移模型及黏土膜效率系数的试验研究[D]. 南京: 南京大学, 2017.

    ZHOU Ying. A Simplified Solute Transport Model and Experimental Study of the Efficiency Coefficient of Clay Membranes in A Reverse Osmosis System[D]. Nanjing: Nanjing University, 2017. (in Chinese)
    [14]
    SHACKELFORD C D. Membrane behavior in geosynthetic clay liners[M]// Geo-Frontiers 2011: Advances in Geotechnical Engineering, ASCE, Reston, Va, 2011: 1961-1970.
    [15]
    GROENEVELT P H, ELRICK D E. Coupling phenomena in saturated homo-ionic montmorillonite: Ⅱ theoretical[J]. Soil Science Society of America Journal, 1976, 40(6): 820-823. doi: 10.2136/sssaj1976.03615995004000060011x
    [16]
    高国瑞. 膨胀土的微结构和膨胀势[J]. 岩土工程学报, 1984(2): 40-48. http://www.cgejournal.com/cn/article/id/8782

    GAO Guorui. Microstructure and swelling potential of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 1984(2): 40-48. (in Chinese) http://www.cgejournal.com/cn/article/id/8782
    [17]
    张平, 房营光, 闫小庆, 等. 不同干燥方法对重塑膨润土压汞试验用土样的影响试验研究[J]. 岩土力学, 2011, 32(增刊1): 388-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1070.htm

    ZHANG Ping, FANG Yingguang, YAN Xiaoqing, et al. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. Rock and Soil Mechanics, 2011, 32(S1): 388-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1070.htm
    [18]
    何俊, 施建勇. 膨润土微观结构SEM观察中的表观孔隙率[J]. 河海大学学报(自然科学版), 2007, 35(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200702023.htm

    HE Jun, SHI Jianyong. Apparent porosity in SEM observation of microstructure of bentonite[J]. Journal of Hohai University (Natural Sciences), 2007, 35(2): 220-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200702023.htm
    [19]
    刘睿, 杜延军, 梅丹兵, 等. 土-膨润土系竖向隔离工程屏障阻滞重金属污染物运移特性试验研究[J]. 防灾减灾工程学报, 2018, 38(5): 815-821. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805008.htm

    LIU Rui, DU Yanjun, MEI Danbing, et al. Laboratory study of soil-bentonite vertical barrier on heavy metal migration retardation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 815-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805008.htm
    [20]
    傅贤雷, 张润, 万勇, 等. 改性土-膨润土阻隔屏障化学渗透膜效应研究[J]. 岩土工程学报, 2020, 42(增刊1): 172-176. doi: 10.11779/CJGE2020S1034

    FU Xianlei, ZHANG Run, WAN Yong, et al. Chemico-osmotic membrane behaviors of amended soil-bentonite vertical barrier[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 172-176. (in Chinese) doi: 10.11779/CJGE2020S1034
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return