• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012
Citation: WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012

Influences of alkaline oxidant on strength of cement-stabilized sludge

More Information
  • Received Date: January 14, 2018
  • Published Date: April 24, 2019
  • In order to eliminate the adverse effects of organic matter on the treatment of sludge with cement, the countermeasures to increase the strength of cement-stabilized sludge are put forward, including degrading organic matter, reducing thickness of double electric layers and maintaining pH value steadily. The potassium ferrate and sodium bicarbonate are used as the alkaline oxidant to treat the sludge with cement. Through the unconfined compressive strength tests, the influences of alkaline oxidant on the strength of cement-stabilized sludge are understood preliminarily. The solidification mechanism of alkaline oxidant is studied by means of the organic element tests, electrokinetic potential tests, specific surface area tests and SEM. The experimental results show that the unconfined compressive strength of cement-stabilized sludge can reach 1.536 MPa after curing for 7 days using the alkaline oxidant. The sodium bicarbonate maintains the cement-stabilized sludge in an alkaline environment with the pH value at 9 to 10 by neutralizing organic acids. Under this condition, the potassium ferrate can degrade organic matter effectively. Thus, the removal of the organic matter shell on the surface of clay particles is conducive to free SiO2 and Al2O3 to dissolve into the pore solution, which promotes the formation of cement hydration products. Besides, the high valence ions in pore solution replacing the low valence ions on the clay particles surface lead to a decrease in repulsion between the successive diffused double layers and the flocculation of soil particles.
  • [1]
    朱伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41.
    (ZHU Wei, ZHANG Chun-lei, LIU Han-long, et al.The status of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41. (in Chinese))
    [2]
    BANOUNE B, MELBOUCI B, ROSQUOËT F, et al. Treatment of river sediments by hydraulic binders for valorization in road construction[J]. Bulletin of Engineering Geology & the Environment, 2016, 75(4): 1-13.
    [3]
    陈慧娥, 王清. 有机质对水泥加固软土效果的影响[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5816-5821.
    (CHEN Hui-e, WANG Qing.Influences of organic matter on the effects of consolidating soft soil with cement[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5816-5821. (in Chinese))
    [4]
    CHEN Hui-e, WANG Qing.The behaviour of organic matter in the process of soft soil stabilization using cement[J]. Bulletin of Engineering Geology & the Environment, 2006, 65(4): 445-448.
    [5]
    TREMBLAY H, DUCHESNE J, LOCAT J, et al.Influence of the nature of organic compounds on fine soil stabilizatio[J]. Canadian Geotechnical Journal, 2002, 39(3): 535-546.
    [6]
    谷任国, 房营光. 有机质对软土流变性质影响的试验研究[J]. 土木工程学报, 2009(1): 101-106.
    (GU Reng-guo, FANG Ying-guang.Experimental study of the effects of organic matter on the rheological characteristics of soft soils[J]. China Civil Engineering Journal, 2009(1): 101-106. (in Chinese))
    [7]
    OLIVEIRA P J V, CORREIA A A S, GARCIA M R. Effect of organic matter content and curing conditions on the creep behavior of an artificially stabilized soil[J]. Journal of Materials in Civil Engineering, 2014, 24(7): 868-875.
    [8]
    郭印, 徐日庆, 邵允铖. 淤泥质土的固化机理研究[J]. 浙江大学学报(工学版), 2008, 42(6): 1071-1075.
    (GUO Yin, XU Ri-qing, SHAO Yun-cheng.Study on mechanism of muddy soil stabilization[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(6): 1071-1075. (in Chinese))
    [9]
    TASTAN E O, EDIL T B, BENSON C H, et al.Stabilization of organic soils with fly ash[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2011, 137(9): 819-833.
    [10]
    SL237-1999 土工试验规程[S]. 1999. (SL237-1999 Geotechnical test procedures[S]. 1999. (in Chinese))
    [11]
    罗志勇, 李和平, 郑泽根. 高铁酸钾的合成及其在水处理中的应用[J]. 土木建筑与环境工程, 2002, 24(6): 39-43.
    (LUO Zhi-yong, LI He-ping, ZHENG Ze-gen.Preparation of potassium ferrate(VI) and its application in water treatment[J]. Journal of Civil Architectural and Environmental Engineering, 2002, 24(6): 39-43. (in Chinese))
    [12]
    曲久辉, 林谡, 田宝珍, 等. 高铁酸盐氧化絮凝去除水中腐殖质的研究[J]. 环境科学学报, 1999, 19(5): 510-514.
    (QU Jiu-hui, LIN Su, TIAN Bao-zhen, et al.Removal of fulvic acid from drinking water using ferrate[J]. Acta Scientiae Circumstantiae, 1999, 19(5): 510-514. (in Chinese))
    [13]
    JGJ/T 233-2011 水泥配合比设计规程[S]. 2011.
    (JGJ/T 233-2011 Specification for mix proportion design of cement soil[S]. 2011. (in Chinese))
    [14]
    CTJ/T 3073-1998 土壤固化剂[S]. 1998.
    (CJ/T 3073-1998 Soil stabilizer[S]. 1998. (in Chinese))
    [15]
    熊田恭一. 土壤有机质的化学[M]. 北京: 科学出版社, 1984.
    (KUMADA K.Chemistry of soil organic matter[M]. Beijing: Science Press, 1984. (in Chinese))
    [16]
    窦森. 土壤有机质[M]. 北京: 科学出版社, 2010.
    (DOU Sen.Soil organic matter[M]. Beijing: Science Press, 2010. (in Chinese))
    [17]
    李学垣. 土壤化学[M]. 北京: 高等教育出版社, 2001.
    (LI Xue-yuan.Soil chemsitry[M]. Beijing: Higher Education Press, 2001. (in Chinese))
    [18]
    罗志勇, 郑泽根, 张胜涛. 高铁酸盐氧化降解水中苯酚的动力学及机理研究[J]. 环境工程学报, 2009, 3(8): 1375-1378.
    (LUO Zhi-yong, ZHENG Ze-gen, ZHANG Sheng-tao.Kinetics and mechanism of the degradation of phenol by ferrate[J]. Chinese Journal of Environmental Engineering, 2009, 3(8): 1375-1378. (in Chinese))
    [19]
    DELAUDE L, LASZLO P.A novel oxidizing reagent based on potassium ferrate[J]. Journal of Organic Chemistry. 1996, 61(18): 6360-6370.
    [20]
    BOARDMAN D I, GLENDINNING S, ROGERS C D F. Development of stabilisation and solidification in lime-clay mixes[J]. Géotechnique, 2001, 51(5): 533-544.
    [21]
    SHARMA V K.Potassium ferrate(VI): An environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6(2): 143-156.
    [22]
    刘清秉, 项伟, 崔德山, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 33(4): 648-654.
    (LIU Qing-bing, XIANG Wei, CUI De-shan, et al.Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648-654. (in Chinese))
    [23]
    SPOSITO G.The surface chemistry of soils[M]. New York: Oxford University Press, 1984.
    [24]
    卢雪松, 项伟. 离子土壤固化剂加固红色黏土的比表面积研究[J]. 人民长江, 2011(1): 83-86.
    (LU Xu-song, XIANG Wei.Experimental study on specific surface srea of red clay strengthened by ISS[J]. Yangtze River, 2011(1): 83-86. (in Chinese))
    [25]
    崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
    (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese))
  • Related Articles

    [1]LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508
    [2]CAI Hong, XIAO Jian-zhang, WANG Zi-wen, LI Jie. Experimental study on solidification of soft clay based on MICP[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 249-253. DOI: 10.11779/CJGE2020S1049
    [3]WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022
    [4]WU Hao-liang, BO Yu-ling, DU Yan-jun, WEI Ming-li, XUE Qiang. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. DOI: 10.11779/CJGE2019S1035
    [5]SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. DOI: 10.11779/CJGE201805020
    [6]DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007
    [7]LIU Song-yu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155. DOI: 10.11779/CJGE201501018
    [8]LIU Zhao-peng, DU Yan-jun, LIU Song-yu, JIANG Ning-jun, ZHU Jing-jing. Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018
    [9]DU Yan-jun, JIANG Ning-jun, WANG Le, WEI Ming-li. Strength and microstructure characteristics of cement-based solidified/stabilized zinc-contaminated kaolin[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2114-2120.
    [10]Unconfined Compressive Strength Properties of Cement Solidified/Stabilized Lead-Contaminated Soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903.
  • Cited by

    Periodical cited type(16)

    1. 邵吉成,袁波,白银银,骆嘉成. 采用骨料架构-固化技术对开挖淤泥加固试验研究. 土木与环境工程学报(中英文). 2025(01): 100-109 .
    2. 周震,何庆宇,肖源杰,董娜,曹竞荣,杨涛,孙向东. 建筑固废再生骨料及矿碴粉与水泥联合固化的淤泥强度及微观结构研究. 铁道科学与工程学报. 2025(02): 677-689 .
    3. 林楚轩,孙宏磊,翁振奇. 生物酶联合水泥固化淤泥力学性能及机理. 哈尔滨工业大学学报. 2024(07): 46-54 .
    4. 毛陈军. 固化淤泥土对水泥砂浆影响的试验研究. 工程建设与设计. 2024(15): 172-174 .
    5. 卢立海,章寒英,邵吉成. 激发性地聚物生态固化剂的应用及材料成本分析. 水利水电技术(中英文). 2023(03): 182-192 .
    6. 葛津宇,韦华,徐菲,韩雪松,朱鹏飞,肖怀前,李怀森. CSH-蒙脱石界面能对水泥固化蒙脱土抗压强度的影响. 硅酸盐通报. 2023(03): 827-836 .
    7. 袁波,邵吉成,骆嘉成,叶宏峰. 基于固结-固化复合技术对温州淤泥加固的试验研究. 水文地质工程地质. 2022(01): 66-74 .
    8. 许皇瑞,王强,葛单单,吴刘燕. 粉煤灰基复合材料固化泥浆力学特性试验研究. 河南城建学院学报. 2022(02): 32-36+48 .
    9. 邵吉成,袁波,骆嘉成,卢立海,傅正园. 固化剂加固温州淤泥的物理力学性质研究. 地下空间与工程学报. 2022(03): 935-944 .
    10. 边晓亚,程宇熙. 低掺量水泥固化海泥的强度与应变特性研究. 武汉工程大学学报. 2021(01): 76-80 .
    11. 刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 .
    12. 骆嘉成,邵吉成,袁波,武亚军. 分层加固法对温州淤泥类渣土加固的现场试验研究. 岩石力学与工程学报. 2021(S2): 3483-3492 .
    13. 罗晓卷,张志强,邓仁健,周赛军. 水泥/粉煤灰/MgO固化对淤泥中重金属的固化效果及机理. 福建建筑. 2020(02): 99-103 .
    14. 张启,孙秀丽,刘文化,张洪勇,杨钢. 不同水泥掺量下非饱和固化淤泥力学特性试验研究. 大连理工大学学报. 2020(02): 184-191 .
    15. 李锐铎,张双娇,郑艺伟,王思会,王峥. 基于正交试验的复合固化剂固化淤泥无侧限抗压强度试验研究. 河南城建学院学报. 2020(01): 44-47 .
    16. 雷庆强,罗晓卷,邓仁健,周赛军,陈炳初,解付兵. 不同固化方式对城市淤泥中重金属固化效果的对比研究. 市政技术. 2020(05): 244-248 .

    Other cited types(12)

Catalog

    Article views (363) PDF downloads (137) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return