Citation: | WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022 |
[1] |
AL-TABBAA A, BARKER P, EVANS C W. Soil mix technology for land remediation: recent innovations[C]//Proceedings of the Institution of Civil Engineers Ground Improvement, 2011, Great Britain: 127-137.
|
[2] |
AL-TABBAA A, LISKA M, OUELLET-PLAMONDON C, et al. Soil mix technology for integrated remediation and ground improvement: from laboratory work to field trials[C]//Proceedings of the Fourth International Conference on Grouting and Deep Mixing, 2012, New Orleans: 522-532.
|
[3] |
GU K, JIN F, AL-TABBAA A, et al. Incorporation of reactive magnesia and quicklime in sustainable binders for soil stabilisation[J]. Engineering Geology, 2015, 195: 53-62. doi: 10.1016/j.enggeo.2015.05.025
|
[4] |
WU H L, JIN F, BO Y L, et al. Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests[J]. Construction and Building Materials, 2018, 172: 626-634. doi: 10.1016/j.conbuildmat.2018.03.164
|
[5] |
YI Y, LISKA M, AL-TABBAA A. Initial investigation into the use of GGBS-MgO in soil stabilisation[C]//Proceedings of the Fourth International Conference on Grouting and Deep Mixing, 2012, New Orleans: 444-453.
|
[6] |
薄煜琳. 粒化高炉矿渣和氧化镁固化稳定化铅污染黏土的强度、溶出及微观特性的研究[D]. 南京: 东南大学, 2015.
Bo Yu-Lin. The Strength, Leaching and Microscopic Mechanism of Ground Granulated Blast Furnace Slag and Magnesium Oxide Stabilized Lead-contaminated Soils[D]. Nanjing: Southeast University, 2015, (in Chinese)
|
[7] |
NIDZAM R M, KINUTHIA J M. Sustainable soil stabilisation with blastfurnace slag - a review[J]. Construction Materials: Proceedings of the Institution of Civil Engineers, 2010, 163(3): 157-165. doi: 10.1680/coma.2010.163.3.157
|
[8] |
SHI C, DAY R L. Chemical activation of blended cements made with lime and natural pozzolans[J]. Cement and Concrete Research, 1993, 23(6): 1389-1396. doi: 10.1016/0008-8846(93)90076-L
|
[9] |
SHI C, FERNáNDEZ-JIMéNEZ A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements[J]. Journal of Hazardous Materials, 2006, 137(3): 1656-1663. doi: 10.1016/j.jhazmat.2006.05.008
|
[10] |
陈恩义, 李体祯. 优质粒化高炉矿渣粉的生态环保功效[J]. 混凝土世界, 2011(5): 26-30. doi: 10.3969/j.issn.1674-7011.2011.05.006
CHEN En-yi, LI Ti-zhen. The ecological environmental effect of high quality blast furnace slag power[J]. China Concrete, 2011(5): 24-28. (in Chinese) doi: 10.3969/j.issn.1674-7011.2011.05.006
|
[11] |
DU Y J, BO Y L, JIN F, et al. Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying-wetting cycle[J]. European Journal of Environmental and Civil Engineering, 2016, 20: 215-230. doi: 10.1080/19648189.2015.1030088
|
[12] |
LISKA M. Properties and Applications of Reactive Magnesia Cements in Porous Blocks[D]. Cambridge: University of Cambridge, 2010.
|
[13] |
SHAND M A. The Chemistry and Technology of Magnesia[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006.
|
[14] |
JIN F, GU K, AL-TABBAA A. Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste[J]. Cement and Concrete Composites, 2015, 57: 8-16. doi: 10.1016/j.cemconcomp.2014.10.007
|
[15] |
JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294. doi: 10.1016/j.chemosphere.2014.07.027
|
[16] |
YI Y, LISKA M, AL-TABBAA A. Properties and microstructure of GGBS-magnesia pastes[J]. Advances in Cement Research, 2014, 26(2): 114-122. doi: 10.1680/adcr.13.00005
|
[17] |
SHEN Z, PAN S, HOU D, et al. Temporal effect of MgO reactivity on the stabilization of lead contaminated soil[J]. Environment International, 2019, 131.
|
[18] |
JIN F, WANG F, AL-TABBAA A. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders[J]. Chemosphere, 2016, 144: 681-688. doi: 10.1016/j.chemosphere.2015.09.046
|
[19] |
ALPASLAN B, YUKSELEN M A. Remediation of lead contaminated soils by stabilization/solidification[J]. Water, Air & Soil Pollution, 2002, 133(1/2/3/4): 253-263.
|
[20] |
LI W, YI Y. Stabilization/solidification of lead-and zinc- contaminated soils using MgO and CO2[J]. Journal of CO2 Utilization, 2019, 33: 215-221. doi: 10.1016/j.jcou.2019.05.029
|
[21] |
XIA W Y, DU Y J, LI F S, et al. In-situ solidification/stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder[J]. Journal of Hazardous Materials, 2019, 369: 353-361. doi: 10.1016/j.jhazmat.2019.02.031
|
[22] |
MA F, WU B, ZHANG Q, et al. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil[J]. Journal of Hazardous Materials, 2018, 344: 742-748. doi: 10.1016/j.jhazmat.2017.11.015
|
[23] |
SHI C, SPENCE R. Designing of Cement-Based Formula for Solidification/Stabilization of Hazardous, Radioactive, and Mixed Wastes[J]. Critical Reviews in Environmental Science and Technology, 2010(4): 391-417.
|
[24] |
SUZUKI T, NAKAMURA A, NIINAE M, et al. Lead immobilization in artificially contaminated kaolinite using magnesium oxide-based materials: Immobilization mechanisms and long-term evaluation[J]. Chemical Engineering Journal, 2013, 232: 380-387. doi: 10.1016/j.cej.2013.07.121
|
[25] |
SUBRAMANIAN S, KHAN Q, KU T. Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement[J]. Construction and Building Materials, 2019, 202: 308-318. doi: 10.1016/j.conbuildmat.2018.12.121
|
[26] |
PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016(127/128): 134-142.
|
[27] |
KERAMATIKERMAN M, CHEGENIZADEH A, NIKRAZ H. Effect of GGBFS and lime binders on the engineering properties of clay[J]. Applied Clay Science, 2016(132/133): 722-730.
|
[28] |
SHARMA A K, SIVAPULLAIAH P V. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer[J]. Soils and Foundations, 2016, 56(2): 205-212. doi: 10.1016/j.sandf.2016.02.004
|
[29] |
AL TABBAA A L M, JEGANDAN S, et al. Overview of project SMiRT for integrated remediation and ground improvement[C]//International Symposium on Soil Mixing and Admixture Stabilisation, 2009, Okinawa.
|
[30] |
XUE Q, WANG P, LI J S, et al. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test[J]. Chemosphere, 2017, 166: 1-7. doi: 10.1016/j.chemosphere.2016.09.059
|
[31] |
OUELLET-PLAMONDON C. Characterisation and Performance of Innovative Aluminosilicates for Soil Mix Technology Permeable Reactive Barriers[D]. Cambridge: University of Cambridge, 2012.
|
[32] |
WHEELER P. Leachate repellent[J]. Ground Engineering, 1995, 28(5): 20-22.
|
[33] |
王菲, 沈征涛, 金飞. 原位固化/稳定污染土不同深度下强度和浸出特性[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1019.htm
WANG Fei, SHEN Zheng-tao, JIN Fei. Strength and leaching performances of in-situ stabilized/solidified (S/S) contaminated site soils under different depth[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(S1): 105-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1019.htm
|
[34] |
PAVIA S, CONDREN E. Study of the durability of OPC versus GGBS concrete on exposure to silage effluent[J]. Journal of Materials in Civil Engineering, 2008, 20(4): 313-320. doi: 10.1061/(ASCE)0899-1561(2008)20:4(313)
|
[35] |
LIMBACHIYA V, GANJIAN E, CLAISSE P. Strength, durability and leaching properties of concrete paving blocks incorporating GGBS and SF[J]. Construction and Building Materials, 2016, 113: 273-279. doi: 10.1016/j.conbuildmat.2016.02.152
|
[36] |
WANG F, WANG H, JIN F, et al. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil[J]. Journal of Hazardous Materials, 2015, 285: 46-52. doi: 10.1016/j.jhazmat.2014.11.002
|
[37] |
KOGBARA R B, AL-TABBAA A, YI Y, et al. pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil[J]. Journal of Environmental Sciences, 2012, 24(9): 1630-1638. doi: 10.1016/S1001-0742(11)60991-1
|
[38] |
WANG F, WANG H, AL-TABBAA A. Leachability and heavy metal speciation of 17-years old stabilised/solidified contaminated site soils[J]. Journal of Hazardous Materials, 2014, 278: 144-151. doi: 10.1016/j.jhazmat.2014.05.102
|
[39] |
WIELAND E, DäHN R, VESPA M, et al. Micro- spectroscopic investigation of Al and S speciation in hardened cement paste[J]. Cement and Concrete Research, 2010, 40(6): 885-891. doi: 10.1016/j.cemconres.2010.02.001
|
[40] |
LEONARD S A, STEGEMANN J A. Stabilization/solidification of petroleum drill cuttings: Leaching studies[J]. Journal of Hazardous Materials, 2010, 174(1): 484-491.
|
[41] |
XEIDAKIS G S. Stabilization of swelling clays by Mg(OH)2. Changes in clay properties after addition of Mg-hydroxide[J]. Engineering Geology, 1996, 44(1/2/3/4): 107-120.
|
[42] |
WANG F, WANG H, AL-TABBAA A. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils[J]. Journal of Hazardous Materials, 2015, 286: 503-508. doi: 10.1016/j.jhazmat.2015.01.007
|
[43] |
GILLMAN G P. Hydrotalcite: leaching-retarded fertilizers for sandy soils[J]. Management of Tropical Sandy Soils for Sustainable Agriculture, 2005: 107-111.
|