• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, LI Guang-shuai, CAO Pei, WU Xiao-feng. Development of miniature triaxial apparatus for testing of macro- and micro-mechanical behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 6-10. DOI: 10.11779/CJGE2020S1002
Citation: JIANG Ming-jing, LI Guang-shuai, CAO Pei, WU Xiao-feng. Development of miniature triaxial apparatus for testing of macro- and micro-mechanical behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 6-10. DOI: 10.11779/CJGE2020S1002

Development of miniature triaxial apparatus for testing of macro- and micro-mechanical behaviors of soils

More Information
  • Received Date: June 04, 2020
  • Available Online: December 07, 2022
  • In order to explore the microscopic mechanisms associated with the macroscopic mechanical properties of soil, it is necessary to investigate the microscopic mechanical behaviors of soil. Based on the conventional triaxial apparatus, a miniature triaxial apparatus suitable for industrial CT system scanning is developed, which includes loading device and acquisition control system. The main features are as follows. The loading device can be put into CT equipment for rotary scanning because of small size and light weight. The specimen can be scanned clearly to obtain the microstructure and mechanical information of soil under triaxial stress. The reliable test data can be obtained. The miniature triaxial apparatus has strong compatibility, which does not affect the function of CT and does not also refit CT. It also has the advantage of convenient operation and low price. The contrast tests for the dry Toyoura sand samples are carried out by the miniature triaxial apparatus and conventional triaxial apparatus. The results show the stress-strain relationship and angle of internal friction obtained from miniature triaxial apparatus are in agreement with that obtained from the conventional triaxial apparatus. There is little difference on angles of internal friction obtained by two apparatus. Thus the reliability of the miniature triaxial apparatus is verified.
  • [1]
    蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [2]
    AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153-166. doi: 10.1680/geot.2007.57.2.153
    [3]
    JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation[J]. Mechanics of Materials, 2012, 55(14): 1-15.
    [4]
    JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357. doi: 10.1016/j.compgeo.2005.05.001
    [5]
    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Geotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    [6]
    WIEBICKE M, ANDO E, VIGGIANI G, et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15(1): 79-93. doi: 10.1007/s11440-019-00869-9
    [7]
    王登科, 张平, 魏建平, 等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报, 2019(增刊2): 574-584. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2020.htm

    WANG Deng-ke, ZHANG Ping, WEI Jian-ping, et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization[J]. Journal of China Coal Society, 2019(S2): 574-584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2020.htm
    [8]
    葛修润, 任建喜, 蒲毅彬, 等. 煤岩三轴细观损伤演化规律的CT动态试验[J]. 岩石力学与工程学报, 1999, 18(5): 497-502. doi: 10.3321/j.issn:1000-6915.1999.05.001

    GE Xiu-run, REN Jian-xi, PU Yi-bin, et al. A real-in-time CT triaxial testing study of meso-damage evolution law of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497-502. (in Chinese) doi: 10.3321/j.issn:1000-6915.1999.05.001
    [9]
    陈正汉, 卢再华, 蒲毅彬. 非饱和土三轴仪的CT机配套及其应用[J]. 岩土工程学报, 2001, 23(4): 387-392. doi: 10.3321/j.issn:1000-4548.2001.04.001

    CHEN Zheng-han, LU Zai-hua, PU Yi-bin. The matching of computerized tomography with triaxial test apparatus for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 387-392. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.001
    [10]
    李小春, 曾志姣, 石露, 等. 岩石微焦CT扫描的三轴仪及其初步应用[J]. 岩石力学与工程学报, 2015, 34(6): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506006.htm

    LI Xiao-chun, ZENG Zhi-jiao, SHI Lu, et al. Triaxial apparatus for micro-focus CT scan of rock and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1128-1134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506006.htm
    [11]
    庞旭卿, 胡再强, 李宏儒, 等. 黄土剪切损伤演化及其力学特性的CT-三轴试验研究[J]. 水利学报, 2016, 47(2): 180-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602007.htm

    PANG Xu-qing, HU Zai-qiang, LI Hong-ru, et al. Structure damage evolution and mechanical properties of loess by CT-triaxial test[J]. Journal of Hydraulic Engineering, 2016, 47(2): 180-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602007.htm
    [12]
    曹剑秋, 张巍, 肖瑞, 等. 南京粉砂三轴压缩过程中的三维孔隙结构演化特征[J]. 地球科学与环境学报, 2018, 40(4): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201804010.htm

    CAO Jian-qiu, ZHANG Wei, XIAO Rui, et al. Characteristics of 3D pore structure evolution 0f Nanjing silty sand during the triaxial compression[J]. Journal of Earth Sciences and Environment, 2018, 40(4): 487-496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201804010.htm
    [13]
    程壮, 王剑锋. 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39(3): 1123-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803043.htm

    CHENG Zhuang, WANG Jian-feng. A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics. 2018, 39(3): 1123-1129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803043.htm
    [14]
    土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
  • Related Articles

    [1]JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. DOI: 10.11779/CJGE202108003
    [2]ZHANG Fu-guang, NIE Zhuo-chen, CHEN Meng-fei, FENG Huai-ping. DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 456-464. DOI: 10.11779/CJGE202103008
    [3]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [4]JIANG Ming-jing, LI Tao, HU Hai-jun. Numerical simulation of biaxial tests on structured loess by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 241-246.
    [5]JIANG Ming-jing, LI Li-qing, SHEN Zhi-fu. Evaluation of double-shearing type kinematic models for granular flows by use of distinct element methods for non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 619-626.
    [6]Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [7]ZHANG Chong, JIN Feng. 3D distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1536-1543.
    [8]ZHANG Chong, JIN Feng, HOU Yanli. 3-D simple deformable distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 159-163.
    [9]LIU Songyu, ZHU Zhiduo, FANG Lei, DU Yanjun. On the standards and methods of improvement for liquefaction ground in expressway engineering[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 135-138.
    [10]Liu Sihong, Lu Tinghao. Microscopic shear mechanism of granular materials in simple shear by DEM[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 608-611.
  • Cited by

    Periodical cited type(6)

    1. 梁旭之,郑世伦,刘斌,王云进,肖平. 矿区道路排水设施设计研究. 能源与环保. 2022(06): 279-284 .
    2. 唐辉明. 重大滑坡预测预报研究进展与展望. 地质科技通报. 2022(06): 1-13 .
    3. 张伏光,聂卓琛,陈孟飞,冯怀平. 不排水循环荷载条件下胶结砂土宏微观力学性质离散元模拟研究. 岩土工程学报. 2021(03): 456-464 . 本站查看
    4. 李涛,高颖,张嘉睿,李殿鑫,陈伟,张鹏,李博,梅奥然. 陕北保水采煤背景下MICP再造隔水土层的试验研究. 煤炭学报. 2021(09): 2984-2994 .
    5. 田威,李腾,贾能,张旭东,贺礼. 固化剂在黄土路基工程中的研究进展. 公路. 2021(11): 45-52 .
    6. 戴轩,霍海峰,程雪松,郭旺,冯兴. 高水压作用下水砂耦合流失的DEM-CFD分析. 工业建筑. 2020(11): 82-90 .

    Other cited types(12)

Catalog

    Article views (250) PDF downloads (113) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return