Citation: | JIANG Ming-jing, CHEN Yi-ru, LU Guo-wen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. DOI: 10.11779/CJGE202108003 |
[1] |
MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197.
|
[2] |
WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): 465-484.
|
[3] |
SOGA K, NG M Y A, LEE S L, et al. Characterisation and Engineering Properties of Methane Hydrate Soils[M]. London: Taylor and Francis, 2006: 2591-2642.
|
[4] |
SONG Y C, YANG L, ZHAO J F, et al. The status of natural gas hydrate research in China: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 778-791. doi: 10.1016/j.rser.2013.12.025
|
[5] |
YAN C, REN X, CHENG Y, et al. Geomechanical issues in the exploitation of natural gas hydrate[J]. Gondwana Research, 2020, 81: 403-422. doi: 10.1016/j.gr.2019.11.014
|
[6] |
MORIDIS G J, COLLETT T S, DALLIMORE S R, et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada[J]. Journal of Petroleum Science and Engineering, 2004, 43(3/4): 219-238.
|
[7] |
TANG L G, LI X S, FENG Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy and Fuels, 2007, 21(1): 227-233. doi: 10.1021/ef0601869
|
[8] |
MORIDIS G J, REAGAN M T. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis[J]. Journal of Petroleum Science and Engineering, 2011, 76(3/4): 124-137.
|
[9] |
OYAMA H, KONNO Y, MASUDA Y, et al. Dependence of depressurization-induced dissociation of methane hydrate bearing laboratory cores on heat transfer[J]. Energy & Fuels, 2009, 23(10): 4995-5002.
|
[10] |
YIN Z Y, MORIDIS G, CHONG Z R, et al. Numerical analysis of experiments on thermally induced dissociation of methane hydrates in porous media[J]. Industrial & Engineering Chemistry Research, 2018, 57(17): 5776-5791.
|
[11] |
MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research, 2011, 116(B6): B06102.
|
[12] |
HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
|
[13] |
HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and Petroleum Geology, 2014, 51(2): 52-62.
|
[14] |
SONG Y C, ZHU Y M, LIU W G, et al. Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation[J]. Marine and Petroleum Geology, 2014, 51(2): 70-78.
|
[15] |
KIMOTO S, OKA F, FUSHITA T, et al. A chemo-thermo- mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation[J]. Computers and Geotechnics, 2007, 34(4): 216-228. doi: 10.1016/j.compgeo.2007.02.006
|
[16] |
RUTQVIST J, MORIDIS G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments[J]. SPE Journal, 2009, 14(2): 267-282. doi: 10.2118/126129-PA
|
[17] |
UCHIDA S. Numerical Investigation of Geomechanical Behaviour of Hydrate Bearing Sediments[D]. Cambridge: University of Cambridge, 2012.
|
[18] |
GUPTA S, WOHLMUTH B, HELMIG R. Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs[J]. Advances in Water Resources, 2016, 91: 78-87. doi: 10.1016/j.advwatres.2016.02.013
|
[19] |
ZHOU M L, SOGA K, YAMAMOTO K, et al. Geomechanical responses during depressurization of hydrate- bearing sediment formation over a long methane gas production period[J]. Geomechanics for Energy and the Environment, 2020, 23: 100111. doi: 10.1016/j.gete.2018.12.002
|
[20] |
蒋明镜, 付昌, 贺洁, 等. 不同开采方法下深海能源土的离散元模拟[J]. 岩土力学, 2015, 36(增刊2): 639-647. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2093.htm
JIANG Ming-jing, FU Chang, HE Jie, et al. Distinct element simulations of exploitation of methane hydrate bearing sediments with different methods[J]. Rock and Soil Mechanics, 2015, 36(S2): 639-647. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2093.htm
|
[21] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[22] |
JIANG M J, SUN R H, ARROYO M, et al. Salinity effects on the mechanical behaviour of methane hydrate bearing sediments: a DEM investigation[J]. Computers and Geotechnics, 2021, 133: 104067. doi: 10.1016/j.compgeo.2021.104067
|
[23] |
MORIDIS G. User's manual for the hydrate v1. 5 option of TOUGH+ v1. 5: A code for the simulation of system behavior in hydrate-bearing geologic media[M]. Oak, Ridge US Lawrence Berkeley National Laboratory, 2014.
|
[24] |
蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
|
[25] |
ITASCA PFC 6.0 (Particle Flow Code) Documentation[M]. Minmeapolics: ITASCA Inc, 2019.
|
[26] |
KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. doi: 10.1016/0009-2509(87)80169-0
|
[27] |
LIU X, FLEMINGS P B P. Dynamic multiphase flow model of hydrate formation in marine sediments[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B3): B03101.
|
[28] |
ZHANG A, JIANG M J, THORNTON C. A coupled CFD-DEM method with moving mesh for simulating undrained triaxial tests on granular soils[J]. Granular Matter, 2020, 22(1): 1-13. doi: 10.1007/s10035-019-0969-4
|
[29] |
HU L T, WINTERFELD P H, FAKCHAROENPHOL P, et al. A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 107: 1-11. doi: 10.1016/j.petrol.2013.04.005
|
[30] |
JAEGER J C, COOK NGW, ZIMMERMAN R W, Fundamentals of Rock Mechanics[M]. 4th eds. Malden: Blackwell Publishing, 2007.
|
[31] |
WANG Y, KOU X, FENG J C, et al. Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus[J]. Applied Energy, 2020, 262: 114397. doi: 10.1016/j.apenergy.2019.114397
|
[32] |
蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
|
[33] |
CHEN F, DRUMM E C, GUIOCHON G. Coupled discrete element and finite volume solution of two classical soil mechanics problems[J]. Computers and Geotechnics, 2011, 38(5): 638-647. doi: 10.1016/j.compgeo.2011.03.009
|
[34] |
JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
|
[35] |
JIANG M J, SHEN Z F, WANG J F. A novel three- dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163. doi: 10.1016/j.compgeo.2014.12.011
|
[36] |
WEIBULL W. The phenomenon of rupture in solids[J]. Proceedings of Royal Swedish Institute of Engineering Research, 1939, 153: 1-55.
|