• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Cun, ZHAO Yi-xin, TU Shi-hao, ZHANG Tong. Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 696-704. DOI: 10.11779/CJGE202004012
Citation: ZHANG Cun, ZHAO Yi-xin, TU Shi-hao, ZHANG Tong. Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 696-704. DOI: 10.11779/CJGE202004012

Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf

More Information
  • Received Date: August 29, 2019
  • Available Online: December 07, 2022
  • During the compaction process of broken coal and rock mass in a caving zone, the re-breakage of the rock and coal affects the compaction stress and pore characteristics of the caving zone. In this study, a discrete element numerical simulation of a broken coal and rock sample (BCRS) based on the bonded particle model is carried out to study the evolution characteristics of stress, strain and breakage during its compaction. The influence of coal-rock combination ratio and structure on the breakage and compaction characteristics of BCRS is analyzed. The stress–strain curve of the BCRS during compaction can be divided into two stages with the maximum vertical strain εm, and the stress models for these stages are given. When the strain exceeds εm, the stress increases linearly, and the slope of the straight line is proportional to the proportion of rock practices in the BCRS. But the proportion of rock practices has little effect on the εm. With the increase of strain, the breaking rate of BCRS increases in an S-shaped manner. When the strain is greater than εm, the coal and rock practices will be basically no longer broken. Under the same coal-rock ratio, the coal-rock combination structure has a great influence on the breaking rate of the BCRS. In the loading process of BCRS, the broken coal practices take precedence over the broken rock ones, and then produce stress relief and filling effect on the surrounding broken rock particles, which greatly reduces the breaking rate of rock samples. Finally, the fitting model for breaking rate-strain of composite BCRS is given, and the strain at the maximum increase speed value of the breaking rate is put forward to quantitatively analyze the influence of coal-rock ratio on the breaking rate.
  • [1]
    王志强, 李鹏飞, 王磊, 等. 再论采场“三带”的划分方法及工程应用[J]. 煤炭学报, 2013, 38(增刊2): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S2006.htm

    WANG Zhi-qiang, LI Peng-fei, WANG Lei, et al. Method of division and engineering use of “three-band” in the stope again[J]. Journal of China Coal Society, 2013, 38(S2): 287-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S2006.htm
    [2]
    蒋力帅, 武泉森, 李小裕, 等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报, 2017, 42(8): 1951-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708005.htm

    JIANG Li-shuai, WU Quan-sen, LI Xiao-yu, et al. Numerical simulation on coupling method between mining-induced stress and goaf compression[J]. Journal of China Coal Society, 2017, 42(8): 1951-1959. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201708005.htm
    [3]
    孟召平, 师修昌, 刘珊珊, 等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报, 2016, 41(3): 537-544. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm

    MENG Zhao-ping, SHI Xiu-chang, LIU Shan-shan, et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of the China Coal Society, 2016, 41(3): 537-544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm
    [4]
    顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU Da-zhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm
    [5]
    程卫民, 张孝强, 王刚, 等. 综放采空区瓦斯与遗煤自燃耦合灾害危险区域重建技术[J]. 煤炭学报, 2016, 41(3): 662-671. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603019.htm

    CHENG Wei-min, ZHANG Xiao-qiang, WANG Gang, et al. Reconstruction technology of gas and coal spontaneous combustion coupled hazard in fully mechanized caving goaf[J]. Journal of China Coal Society, 2016, 41(3): 662-671. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603019.htm
    [6]
    ZHANG C, TU S H, ZHANG L, et al. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines[J]. Journal of Geophysics and Engineering, 2016, 13(2): 181-193. doi: 10.1088/1742-2132/13/2/181
    [7]
    朱德福, 屠世浩, 袁永, 等. 破碎岩体压实特性的三维离散元数值计算方法研究[J]. 岩土力学, 2018, 39(3): 1047-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803034.htm

    ZHU De-fu, TU Shi-hao, YUAN Yong, et al. An approach to determine the compaction characteristics of fractured rock by 3D discrete element method[J]. Rock and Soil Mechanics, 2018, 39(3): 1047-1055. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803034.htm
    [8]
    ZHANG C, TU S H, ZHAO Y X. Compaction characteristics of the caving zone in a longwall goaf: a review[J]. Environmental Earth Sciences, 2019, 78(1): 27-46.
    [9]
    梁冰, 汪北方, 姜利国, 等. 浅埋采空区垮落岩体碎胀特性研究[J]. 中国矿业大学学报, 2016, 45(3): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603008.htm

    LIANG Bing, WANG Bei-fang, JIANG Li-guo, et al. Broken expand properties of caving rock in shallow buried goaf[J]. Journal of China University of Mining and Technology, 2016, 45(3): 475-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603008.htm
    [10]
    屠世浩, 张村, 杨冠宇, 等. 采空区渗透率演化规律及卸压开采效果研究[J]. 采矿与安全工程学报, 2016, 33(4): 571-577. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604001.htm

    TU Shi-hao, ZHANG Cun, YANG Guan-yu, et al. Research on permeability evolution law of goaf and pressure-relief mining effect[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 571-577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604001.htm
    [11]
    ZHANG C, TU S H, ZHANG L. Analysis of broken coal permeability evolution under cyclic loading and unloading conditions by the model based on the hertz contact deformation principle[J]. Transport in Porous Media, 2017, 119(3): 739-754.
    [12]
    张振南, 缪协兴, 葛修润. 松散岩块压实破碎规律的试验研究[J]. 岩石力学与工程学报, 2005, 24(3): 451-455. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300G.htm

    ZHANG Zhen-nan, MIAO Xie-xing, GE Xiu-run. Testing study on compaction breakage of loose rock blocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 451-455. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300G.htm
    [13]
    张天军, 石涛, 潘红宇, 等. 三维应力下破碎砂岩渗透特性试验研究[J]. 西安科技大学学报, 2018, 38(2): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201802016.htm

    ZHANG Tian-jun, SHI Tao, PAN Hong-yu, et al. Permeability test of broken sandstones under the three-dimensional stresses[J]. Journal of Xi'an University of Science and Technology, 2018, 38(2): 273-280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201802016.htm
    [14]
    ZHAO J, YIN L, GUO W. Stress–seepage coupling of cataclastic rock masses based on digital image technologies[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2355-2372.
    [15]
    付茹, 胡新丽, 周博, 等. 砂土颗粒三维形态的定量表征方法[J]. 岩土力学, 2018, 39(2): 483-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802010.htm

    FU Ru, HU Xin-li, ZHOU Bo, et al. A quantitative characterization method of 3D morphology of sand particles[J]. Rock and Soil Mechanics, 2018, 39(2): 483-490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802010.htm
    [16]
    郁邦永, 陈占清, 戴玉伟, 等. 饱和破碎砂岩压实过程中粒度分布及能量耗散[J]. 采矿与安全工程学报, 2018, 35(1): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801029.htm

    YU Bang-yong, CHEN Zhan-qing, DAI Yu-wei, et al. Particle size distribution and energy dissipation of saturated crushed sandstone under compaction[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 197-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801029.htm
    [17]
    薛龙, 王睿, 张建民. 粒状介质三维复杂应力加载离散元数值试验方法[J]. 岩土力学, 2018, 39(12): 4681-4690. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812045.htm

    XUE Long, WANG Rui, ZHANG Jian-min. DEM numerical test method for granular matter under complex 3D loading[J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812045.htm
    [18]
    李杨, 佘成学. 堆石料单粒强度尺寸效应的颗粒流模拟方法研究[J]. 岩土力学, 2018, 39(8): 2951-2959. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808030.htm

    LI Yang, SHE Cheng-Xue. Numerical simulation of effect of size on crushing strength of rockfill grains using particle flow code[J]. Rock and Soil Mechanics, 2018, 39(8): 2951-2959. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808030.htm
    [19]
    徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm

    XU Kui, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
    [20]
    蒋中明, 袁涛, 刘德谦, 等. 粗粒土渗透变形特性的细观数值试验研究[J]. 岩土工程学报, 2018, 40(4): 752-758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804026.htm

    JIANG Zhong-ming, YUAN Tao, LIU De-qian, et al. Mesoscopic numerical tests on seepage failure characteristics of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 752-758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804026.htm
    [21]
    张科芬, 张升, 滕继东, 等. 离散元中破碎自组织对颗粒破碎影响研究[J]. 岩土工程学报, 2018, 40(4): 743-751. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804025.htm

    ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, et al. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804025.htm
    [22]
    BAI Q S, TU S H, ZHANG C. DEM investigation of the fracture mechanism of rock disc containing hole (s) and its influence on tensile strength[J]. Theoretical and Applied Fracture Mechanics, 2016, 86: 197-216.
    [23]
    王明立. 煤矸石压缩试验的颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(7): 1350-1357. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201307008.htm

    WANG Ming-li. Simulation of compression test on gangue by PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1350-1357. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201307008.htm
    [24]
    POTYONDY D O. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329-1364.
    [25]
    YAVUZ H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 193-205.
    [26]
    邹德高, 田继荣, 刘京茂, 等. 堆石料三维形状量化及其对颗粒破碎的影响[J]. 岩土力学, 2018, 39(10): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810003.htm

    ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al. Three- dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39(10): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810003.htm
    [27]
    吴二鲁, 朱俊高, 郭万里, 等. 缩尺效应对粗粒料压实密度影响的试验研究[J]. 岩土工程学报, 2019, 41(9): 1767-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm

    WU Er-lu, ZHU Jun-gao, GUO Wan-li, et al. Experimental study on effect of scaling on compact density of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1767-1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909026.htm
    [28]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
  • Cited by

    Periodical cited type(11)

    1. 林圆,唐建新,袁芳,孔令锐,李成,王潇,鲁思佳. 岩块宏细观参数对垮落带岩体力学特性的影响. 矿业研究与开发. 2024(01): 73-81 .
    2. 韩沛,李小勇,李梦娇. 填石路基快速施工工艺与压实质量控制. 山东交通学院学报. 2024(01): 29-36+42 .
    3. 矫芳芳,李小勇. 36 t压路机填石路基施工工艺与压实质量控制研究. 交通科技. 2024(04): 32-38+43 .
    4. Cun Zhang,Yanhong Chen,Yongle Wang,Qingsheng Bai. Discrete element method simulation of granular materials considering particle breakage in geotechnical and mining engineering: A short review. Green and Smart Mining Engineering. 2024(02): 190-207 .
    5. 杨晓军,李振,杨鹏,刘继勇,王晓东. 基于CT扫描的承压破碎石灰岩空隙结构演化特征. 矿业研究与开发. 2023(10): 145-153 .
    6. 褚召祥. 基于体积法的废弃煤矿水热型热储潜能评估. 工程地质学报. 2023(05): 1696-1710 .
    7. 王昊,姜谙男,冯云鹏,阮颖颖,闵庆华. 破碎岩体中盾构施工掌子面安全系数计算方法研究. 隧道建设(中英文). 2023(S2): 302-309 .
    8. 张天军,刘楠,庞明坤,张秀锋,郭毅,张硕. 级配破碎煤岩体压实过程中再破碎特征研究. 采矿与安全工程学报. 2021(02): 380-387 .
    9. 吕舜. 基于离散系数的煤炭初级采样代表性量化方法研究. 煤炭工程. 2021(04): 88-92 .
    10. 李盛,田文迪,刘玉龙,郜梦棵. 公路填石路基压实工艺优化方法及效果评价. 中南大学学报(自然科学版). 2021(07): 2360-2371 .
    11. 张村,赵毅鑫,屠世浩,郝宪杰,郝定溢,刘金保,任赵鹏. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制. 煤炭学报. 2020(S2): 660-670 .

    Other cited types(20)

Catalog

    Article views (316) PDF downloads (188) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return