• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage clogging characteristics of rock and soil porous media using LBM-IMB-DEM simulation method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 909-917. DOI: 10.11779/CJGE202105015
Citation: JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage clogging characteristics of rock and soil porous media using LBM-IMB-DEM simulation method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 909-917. DOI: 10.11779/CJGE202105015

Seepage clogging characteristics of rock and soil porous media using LBM-IMB-DEM simulation method

More Information
  • Received Date: September 06, 2020
  • Available Online: December 04, 2022
  • Seepage clogging in rock and soil porous media is essentially the result of the coupling action of seepage and solid particles. A numerical computing platform based on the coupled lattice Boltzmann method-immersed moving boundary-discrete element method (LBM-IMB-DEM) is developed and used to simulate the seepage clogging process in rock and soil porous media. Based on the simulated results, the influences of distribution of skeleton particles, size of skeleton particles, porosity, orientation of skeleton particles and water pressure on the seepage clogging characteristics are analyzed. The results show that different spatial distributions of skeleton particles in the porous media result in different clogging characteristics. The smaller the skeleton particle size or the porosity of porous media is, the more the retained particles are after clogging and the more severe the clogging is. The orientation of skeleton particles in the porous media has a certain influence on clogging, and the clogging is the worst when the skeleton particles are strip-shaped and their long axes are all perpendicular to the flow direction. With the increase of water pressure, the retained particles tend to disperse in the porous media and the clogging is more serious. The clogging in the porous media is closely related to their permeability before clogging, and the porous media with high permeability are relatively less prone to clogging.
  • [1]
    翟超, 郭伟锋, 严驰. 黏性土渗透淤堵室内模拟试验及分析[J]. 岩土工程学报, 2016, 38(增刊1): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1029.htm

    ZHAI Chao, GUO Wei-feng, YAN Chi. Laboratory model tests and mechanism of infiltration clogging effect of clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 147-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1029.htm
    [2]
    李识博, 王常明, 王钢城, 等. 粗粒土淤堵模式判别及最优淤堵粒径区间确定[J]. 水利学报, 2013, 44(10): 1217-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201310013.htm

    LI Shi-bo, WANG Chang-ming, WANG Gang-cheng, et al. Clogging types distinguishing of coarse-grained soil and determination of optimal range of clogging grain size[J]. Journal of Hydraulic Engineering, 2013, 44(10): 1217-1224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201310013.htm
    [3]
    曹洪, 朱东风, 范泽, 等. 止水帷幕缝隙渗漏变化过程试验研究[J]. 水利学报, 2019, 50(6): 699-709. doi: 10.13243/j.cnki.slxb.20181117

    CAO Hong, ZHU Dong-feng, FAN Ze, et al. Laboratory study of leakage process for cut-off wall with crack[J]. Journal of Hydraulic Engineering, 2019, 50(6): 699-709. (in Chinese) doi: 10.13243/j.cnki.slxb.20181117
    [4]
    吴昌瑜, 张伟, 李思慎, 等. 减压井机械淤堵机制与防治方法试验研究[J]. 岩土力学, 2009, 30(10): 3181-3187. doi: 10.3969/j.issn.1000-7598.2009.10.050

    WU Chang-yu, ZHANG Wei, LI Si-shen, et al. Research on mechanical clogging mechanism of releaf well and its control method[J]. Rock and Soil Mechanics, 2009, 30(10): 3181-3187. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.050
    [5]
    尚岳全, 孙红月, 侯利国, 等. 管网渗流系统对含碎石黏性土边坡的稳定作用[J]. 岩石力学与工程学报, 2005, 24(8): 1371-1375. doi: 10.3321/j.issn:1000-6915.2005.08.015

    SHANG Yue-quan, SUN Hong-yue, HOU Li-guo, et al. Study of the stability of pebbly clay slopes with pipe drainage system[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1371-1375. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.08.015
    [6]
    年廷凯, 吴昊, 陈光齐, 等. 堰塞坝稳定性评价方法及灾害链效应研究进展[J]. 岩石力学与工程学报, 2018, 37(8): 1796-1812. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808003.htm

    NIAN Ting-kai, WU Hao, CHEN Guang-qi, et al. Research progress on stability evaluation method and disaster chain effect of landslide dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1796-1812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808003.htm
    [7]
    乐超, 徐超, 吴雪峰, 等. 两种塑料排水板滤膜淤堵特性试验研究[J]. 岩土力学, 2014, 35(9): 2529-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409014.htm

    LE Chao, XU Chao, WU Xue-feng, et al. Experimental research on clogging characteristic of two types of PVD filters[J]. Rock and Soil Mechanics, 2014, 35(9): 2529-2534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409014.htm
    [8]
    刘胜, 王媛, 冯迪. 尾矿库中新型复合排渗管排渗特征试验研究[J]. 岩土工程学报, 2019, 41(12): 2360-2366. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912031.htm

    LIU Sheng, WANG Yuan, FENG Di. Experimental study on drainage characteristics of new composite drainage pipes in tailings pond[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2360-2366. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912031.htm
    [9]
    DABIR S, DABIR B, MOGHANLOO R G. A new approach to study deposition of heavy organic compounds in porous media[J]. Fuel, 2016, 185: 273-280.
    [10]
    李识博, 王常明, 王钢城, 等. 松散堆积物坝基渗透淤堵试验及颗粒流模拟[J]. 水利学报, 2012, 43(10): 1163-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201210007.htm

    LI Shi-bo, WANG Chang-ming, WANG Gang-cheng, et al. Infiltration clogging test and simulation by PFC3D for loose dam foundation[J]. Journal of Hydraulic Engineering, 2012, 43(10): 1163-1170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201210007.htm
    [11]
    ZHAO J D, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239(17): 248-258.
    [12]
    蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm

    JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
    [13]
    FENG Y T, HAN K, OWEN D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues[J]. International Journal for Numerical Methods in Engineering, 2010, 72(9): 1111-1134.
    [14]
    DAVID F B, BENJAMIN K C, BRIAN J O L, et al. Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods[J]. Journal of Geophysical Research, 2007, 112: B10209.
    [15]
    WANG M, FENG Y T, OWEN D R J, et al. A novel algorithm of immersed moving boundary scheme for fluid-particle interactions in DEM-LBM[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 109-125.
    [16]
    WANG M, FENG Y T, PANDE G N, et al. A coupled 3-dimensional bonded discrete element and lattice Boltzmann method for fluid-solid coupling in cohesive geomaterials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42: 1405-1424.
    [17]
    WANG M, FENG Y T, WANG C. Numerical investigation of initiation and propagation of hydraulic fracture using the coupled bonded particle-lattice Boltzmann method[J]. Computers & Structures, 2017, 181: 32-40.
    [18]
    何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2008.

    HE Ya-ling, WANG Yong, LI Qing. Lattice Boltzmann Method: Theory and Applications[M]. Beijing: Science Press, 2008. (in Chinese)
    [19]
    郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2008.

    GUO Zhao-li, ZHENG Chu-guang. Theory and Applications of Lattice Boltzmann Method[M]. Beijing: Science Press, 2008. (in Chinese)
    [20]
    BHATNAGAR P L, GROSS E P, KROOK M K. A model for collision processes in gases: I small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
    [21]
    QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484.
    [22]
    NOBLE D R, TORCZYNSKI J R. A lattice-Boltzmann method for partially saturated computational cells[J]. International Journal of Modern Physics C, 1998, 9(8): 1189-1201.
    [23]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [24]
    WAN D, TUREK S. Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method[J]. International Journal for Numerical Methods in Fluids, 2006, 51(5): 531-566.
  • Related Articles

    [1]HU Kai, GAO Xiaowei, XU Bingbing, ZHENG Yingren. Element differential method for poroelastic problems[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2403-2410. DOI: 10.11779/CJGE20221022
    [2]JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage characteristics of soil-rock mixture based on lattice Boltzmann method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 669-677. DOI: 10.11779/CJGE202204009
    [3]ZHOU Yong-chao, XU Heng-lei, CHEN Jia-dai, ZHANG Yi-ping, TANG Yao, PENG Yu. Particle migration and clogging in porous media with seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 255-263. DOI: 10.11779/CJGE202202006
    [4]JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Numerical simulation of mud inrush of tunnels with coupled LBM-DEM[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1000-1009. DOI: 10.11779/CJGE202106003
    [5]LIANG Yue, CHEN Peng-fei, LIN Jia-ding, SUN Zhi-wei. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. DOI: 10.11779/CJGE201907022
    [6]XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017
    [7]LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, HUANG Shi-bing. Experimental research on release characteristics of deposited particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 747-754. DOI: 10.11779/CJGE201504022
    [8]SHENG Jin-chang, WAN Fan, ZHANG Xia, LI Feng-bin, HUANG Qing-fu. Lattice Boltzmann method for rough fracture seepage characteristics of rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1213-1217. DOI: 10.11779/CJGE201407004
    [9]ZHANG Hong-wu, WANG Kun-peng, CHEN Zhen.  Material point method for dynamic analysis of saturated porous media (Ⅱ): dynamic contact analysis between saturated porous media and solid bodies[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1672-1679 .
    [10]CHEN Feixiong, LI Ning, CHENG Guodong. The theoretical frame of multi-phase porous medium for the freezing soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 213-217.
  • Cited by

    Periodical cited type(4)

    1. 罗仁宇,李奇志,祖公博,黄云进,杨耿超,姚清河. 基于卷积神经网络的超分辨率格子Boltzmann方法研究. 力学学报. 2024(12): 3612-3624 .
    2. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
    3. 陈经明,周泽超,陈茜茜,李寻,罗跃. 酸法地浸采铀多井系统中渗透系数时空演化模拟. 有色金属科学与工程. 2022(03): 106-116 .
    4. 吴志平,刘波平,王康,李石滨,胡毕炜,胡必伟,游杰. 基于高性能计算的离散介质冲击过程. 计算机与现代化. 2022(10): 41-46 .

    Other cited types(8)

Catalog

    Article views (358) PDF downloads (312) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return