• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017
Citation: XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017

Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes

More Information
  • Received Date: November 05, 2015
  • Published Date: January 24, 2017
  • The establishment of macropore structure and infiltration simulation is primarily used to explain the mechanism and dynamic change of macropore flows. The macropore domain of unsaturated zone soil of slopes by means of CT scan is acquired. Moreover, based on the lattice Boltzmann method regardless of the external forces, qualitative and quantitative researches on two-dimensional macropore flow seepage process are achieved after the discrete-velocity model, equilibrium distribution function and evolution equation of distribution function are established with boundary conditions and calculation assumptions according to dye tracer experiments. The results show that: (1) This computing method can clearly and quantitatively describe the wetting front propulsion of macropore flows and prove that the macropore effect is obvious, but the effect decreases when the seepage flow velocity gradually tends to be stable. (2) The fluid velocity is faster in better connectivity and larger macropore size area, and the velocity decreases gradually from the center to both sides of macropore which means it is the fastest in the center. (3) The quantity and velocity of fluid flows at the lower depth is under the control of the macropore size at the above depth. The application of the lattice Boltzmann method can offer helps for macropore flows, especially three-dimensional seepage study.
  • [1]
    徐则民. 植被与斜坡非饱和带大空隙[J]. 地学前缘, 2007, 14(6): 134-142. (XU Ze-min. Vegetation and macropores in vadose of hill slopes[J]. Earth Science Frontiers, 2007, 14(6): 134-142. (in Chinese))
    [2]
    刘 伟, 区自清, 应佩峰. 土壤大孔隙及其研究方法[J].应用生态学报, 2001, 12(3): 465-468. (LIU Wei, QU Zi-qing, YING Pei-feng. Chinese Journal of Applied Ecology, 2001, 12(3): 465-468. (in Chinese))
    [3]
    秦耀东, 任 理, 王 济. 土壤中大孔隙流研究进展与现状[J]. 水科学进展, 2000, 11(2): 203-207. (QIN Yao-dong, REN Li, WANG Ji. Review on the study of macropore flow in soil[J]. Advances in Water Science, 2000, 11(2): 203-207. (in Chinese))
    [4]
    李伟莉, 金昌杰, 王安志, 等. 土壤大孔隙流研究进展[J]. 应用生态学报, 2007, 18(4): 888-894. (LI Wei-li, JIN Chang-jie, WANG An-zhi, et al. Research progress in soil macropore flow[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 888-894. (in Chinese))
    [5]
    WARNER G S, NIEBER J L, MOORE I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3): 653-660.
    [6]
    LUXMOORE R J, JARDINE P M, WILSON G V, et al. Physical and chemical controls of preferred path flow through a forested hillslope[J]. Geoderma, 1990, 46(1): 139-154.
    [7]
    CAREY S K, QUINTON W L, GOELLER N T. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils[J]. Hydrological Processes, 2007, 21: 2560-2571.
    [8]
    LAMANDÉ M, LABOURIAU R, HOLMSTRUP M, et al. Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[J]. Geoderma, 2011, 162: 319-326.
    [9]
    吴华山, 陈效民, 陈 粲. 利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报, 2007, 21(2):175-178. (WU Hua-shan, CHEN Xiao-min, CHEN Can. Study on macropore in main paddy soils in tai-lake region with CT[J]. Journal of Soil and Water Conservation, 2007, 21(2): 175-178. (in Chinese))
    [10]
    梁 越, 陈建生, 陈 亮. 孔隙流动数值模拟建模方法及孔隙流速分布规律[J]. 岩土工程学报, 2011, 33(7): 1104-1109. (LIANG Yue, CHEN Jian-sheng, CHEN Liang. Numerical simulation model for pore flow and distribution of their vevelocity[J]. Chinese Journal of Geotech-nical Engineering, 2011, 33(7): 1104-1109. (in Chinese))
    [11]
    冯 杰, 张佳宝, 郝振纯, 等. 水及溶质在有大孔隙的土壤中运移的研究 (Ⅱ): 数值模拟[J]. 水文地质工程地质, 2004, 31(4): 77-82. (FENG Jie, ZHANG Jia-bao, HAO Zhen-chun, et al. A study of the transport of water and solute in macroporous soils(Ⅱ): numerical simulation[J]. Hydrogeology & Engineering Geology, 2004, 31(4): 77-82. (in Chinese))
    [12]
    郭照立, 郑楚光. 格子 Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. (GUO Zhao-li, ZHENG Chu-guang. Theory and applications of lattice boltzmann method[M]. Beijing: Science Press, 2009. (in Chinese))
    [13]
    何雅玲, 王 勇, 李 庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2008. (HE Ya-ling, WANG Yong, LI Qing. Lattice boltzmann method: theory and applications[M]. Beijing: Science Press, 2008. (in Chinese))
    [14]
    申林方, 王志良, 李邵军. 基于格子Boltzman方法的饱和土体细观渗流场[J]. 排灌机械工程学报, 2014, 32(10): 883-887. (SHEN Lin-fang, WANG Zhi-liang, LI Shao-jun. Microscopic seepage field of saturated soil with lattice Boltzmann method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 883-887. (in Chinese))
    [15]
    QIAN Y H, HUMIÈRES D D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484.
    [16]
    徐宗恒, 徐则民, 官 琦, 等. 不同植被发育斜坡土体优先流特征[J]. 山地学报, 2012, 30(5): 521-527. (XU Zong-heng, XU Ze-min, GUAN Qi, et al. The Characteristics of preferential flow in different vegetated slope soils[J]. Journal of Mountain Science, 2012, 30(5): 521-527. (in Chinese))
    [17]
    GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltamann method[J]. Chinese Physics, 2002, 11(4): 366-374.
    [18]
    徐宗恒, 徐则民, 李凌旭. 基于CT扫描的斜坡非饱和带土体大孔隙定量化研究和三维重建[J].水土保持通报, 2015, 35(1): 1-6. (XU Zong-heng, XU Ze-min, LI Ling-xu. Macropores quantification study and 3D reconstruction in vadose zones of hillslope based on X-ray computed tomography[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 1-6. (in Chinese))
  • Related Articles

    [1]HU Kai, GAO Xiaowei, XU Bingbing, ZHENG Yingren. Element differential method for poroelastic problems[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2403-2410. DOI: 10.11779/CJGE20221022
    [2]JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage characteristics of soil-rock mixture based on lattice Boltzmann method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 669-677. DOI: 10.11779/CJGE202204009
    [3]ZHOU Yong-chao, XU Heng-lei, CHEN Jia-dai, ZHANG Yi-ping, TANG Yao, PENG Yu. Particle migration and clogging in porous media with seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 255-263. DOI: 10.11779/CJGE202202006
    [4]JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Numerical simulation of mud inrush of tunnels with coupled LBM-DEM[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1000-1009. DOI: 10.11779/CJGE202106003
    [5]LIANG Yue, CHEN Peng-fei, LIN Jia-ding, SUN Zhi-wei. Pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361-1366. DOI: 10.11779/CJGE201907022
    [6]XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017
    [7]LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, HUANG Shi-bing. Experimental research on release characteristics of deposited particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 747-754. DOI: 10.11779/CJGE201504022
    [8]SHENG Jin-chang, WAN Fan, ZHANG Xia, LI Feng-bin, HUANG Qing-fu. Lattice Boltzmann method for rough fracture seepage characteristics of rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1213-1217. DOI: 10.11779/CJGE201407004
    [9]ZHANG Hong-wu, WANG Kun-peng, CHEN Zhen.  Material point method for dynamic analysis of saturated porous media (Ⅱ): dynamic contact analysis between saturated porous media and solid bodies[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1672-1679 .
    [10]CHEN Feixiong, LI Ning, CHENG Guodong. The theoretical frame of multi-phase porous medium for the freezing soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 213-217.
  • Cited by

    Periodical cited type(4)

    1. 罗仁宇,李奇志,祖公博,黄云进,杨耿超,姚清河. 基于卷积神经网络的超分辨率格子Boltzmann方法研究. 力学学报. 2024(12): 3612-3624 .
    2. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
    3. 陈经明,周泽超,陈茜茜,李寻,罗跃. 酸法地浸采铀多井系统中渗透系数时空演化模拟. 有色金属科学与工程. 2022(03): 106-116 .
    4. 吴志平,刘波平,王康,李石滨,胡毕炜,胡必伟,游杰. 基于高性能计算的离散介质冲击过程. 计算机与现代化. 2022(10): 41-46 .

    Other cited types(8)

Catalog

    Article views (390) PDF downloads (293) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return