• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage characteristics of soil-rock mixture based on lattice Boltzmann method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 669-677. DOI: 10.11779/CJGE202204009
Citation: JIN Lei, ZENG Ya-wu, CHENG Tao, LI Jing-jing. Seepage characteristics of soil-rock mixture based on lattice Boltzmann method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 669-677. DOI: 10.11779/CJGE202204009

Seepage characteristics of soil-rock mixture based on lattice Boltzmann method

More Information
  • Received Date: March 24, 2021
  • Available Online: September 22, 2022
  • In order to explore the seepage characteristics of soil-rock mixture (SRM), random pore-structural models of SRM are constructed and voxelized based on the discrete element method and the proposed virtual slicing technique for three-dimensional discrete element model. Then, the three-dimensional lattice Boltzmann method is introduced to conduct a series of numerical simulations of the seepage flow in SRM from the pore scale, and the influences of rock content, rock size, relative density on the simulated permeability of SRM are comprehensively investigated. Finally, the internal mechanism of the influences of rock content on the permeability of SRM under different conditions is discussed. The results show that when the relative density and rock size both remain unchanged, the permeability of SRM presents a gradually increasing trend with the increase of rock content, and the increasing rate also increases. When other conditions remain unchanged, the permeability of SRM decreases with the increase of relative density. When the rock content is lower than a threshold value, the permeability decreases as the rock size increases, while this trend gets reversed when the rock content exceeds the threshold value. When the density of soils in SRM remains unchanged, the permeability of SRM decreases first and then increases with the increase of rock content.
  • [1]
    廖秋林. 土石混合体地质成因、结构模型及其力学特性、固流耦合特性研究[D]. 北京: 中国科学院地质与地球物理研究所, 2006.

    LIAO Qiu-lin. Geological Origin and Structure Model of Rock and Soil Aggregate and Study on Its Mechanical and MH Coupled Properties[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2006. (in Chinese)
    [2]
    许建聪, 尚岳全. 碎石土渗透特性对滑坡稳定性的影响[J]. 岩石力学与工程学报, 2006, 25(11): 2264–2271. doi: 10.3321/j.issn:1000-6915.2006.11.015

    XU Jian-cong, SHANG Yue-quan. Influence of permeability of gravel soil on debris landslide stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2264–2271. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.11.015
    [3]
    王鹏飞, 李长洪, 马学文, 等. 断层带不同含石率土石混合体渗流特性试验研究[J]. 岩土力学, 2018(增刊2): 53–61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2008.htm

    WANG Peng-fei, LI Chang-hong, MA Xue-wen, et al. Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone[J]. Rock and Soil Mechanics, 2018(S2): 53–61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2008.htm
    [4]
    徐文杰. 土石混合体细观结构力学及其边坡稳定性研究[D]. 北京: 中国科学院地质与地球物理研究所, 2008.

    XU Wen-jie. Study on Meso-Structural Mechanics of Soil-Rock Mixture and Its Slope Stability[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2008. (in Chinese)
    [5]
    周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的试验研究[J]. 湖南大学学报(自然科学版), 2006, 33(6): 25–28. doi: 10.3321/j.issn:1000-2472.2006.06.006

    ZHOU Zhong, FU He-lin, LIU Bao-chen, et al. Experimental study of the permeability of soil-rockmixture[J]. Journal of Hunan University (Natural Sciences), 2006, 33(6): 25–28. (in Chinese) doi: 10.3321/j.issn:1000-2472.2006.06.006
    [6]
    WANG Y, LI X, ZHENG B, et al. Experimental study on the non-Darcy flow characteristics of soil–rock mixture[J]. Environmental Earth Sciences, 2016, 75(9): 1–18.
    [7]
    徐文杰, 王永刚. 土石混合体细观结构渗流数值试验研究[J]. 岩土工程学报, 2010, 32(4): 542–550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004012.htm

    XU Wen-jie, WANG Yong-gang. Meso-structural permeability of S-RM based on numerical tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 542–550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004012.htm
    [8]
    CHEN T, YANG Y T, ZHENG H, et al. Numerical determination of the effective permeability coefficient of soil-rock mixtures using the numerical manifold method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 381–414. doi: 10.1002/nag.2868
    [9]
    CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329–364. doi: 10.1146/annurev.fluid.30.1.329
    [10]
    SUCCI S, FOTI E, HIGUERA F. Three-dimensional flows in complex geometries with the lattice Boltzmann method[J]. Europhysics Letters (EPL), 1989, 10(5): 433–438. doi: 10.1209/0295-5075/10/5/008
    [11]
    PAN C, HILPERT M, MILLER C T. Pore-scale modeling of saturated permeabilities in random sphere packings[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(6): 066702. doi: 10.1103/PhysRevE.64.066702
    [12]
    GHASSEMI A, PAK A. Pore scale study of permeability and tortuosity for flow through particulate media using lattice Boltzmann method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(8): 886–901. doi: 10.1002/nag.932
    [13]
    BORUJENI A T, LANE N M, THOMPSON K, et al. Effects of image resolution and numerical resolution on computed permeability of consolidated packing using LB and FEM pore-scale simulations[J]. Computers & Fluids, 2013, 88: 753–763.
    [14]
    COUSINS T A, GHANBARIAN B, DAIGLE H. Three-dimensional lattice Boltzmann simulations of single-phase permeability in random fractal porous media with rough pore-solid interface[J]. Transport in Porous Media, 2018, 122(3): 527–546. doi: 10.1007/s11242-017-0938-5
    [15]
    XU W J, WANG S, ZHANG H Y, et al. Discrete element modelling of a soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 141–156.
    [16]
    金磊, 曾亚武. 土石混合体宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报, 2018, 37(6): 1540–1550 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806023.htm

    JIN Lei, ZENG Ya-wu. Refined simulation for macro-and meso-mechanical properties and failure mechanism of soil-rock mixture by 3D DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1540–1550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806023.htm
    [17]
    黄青富, 詹美礼, 盛金昌, 等. 基于颗粒离散单元法的获取任意相对密实度下级配颗粒堆积体的数值方法[J]. 岩土工程学报, 2015, 37(3): 537–543. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503022.htm

    HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, et al. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537–543. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503022.htm
    [18]
    BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases: I small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511–525.
    [19]
    QIAN Y H, D'HUMIÈRES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters (EPL), 1992, 17(6): 479–484.
    [20]
    FENG Y T, HAN K, OWEN D R J. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues[J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1111–1134.
    [21]
    金磊, 曾亚武, 叶阳, 等. 不规则颗粒及其集合体三维离散元建模方法的改进[J]. 岩土工程学报, 2017, 39(7): 1273–1281. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707018.htm

    JIN Lei, ZENG Ya-wu, YE Yang, et al. Improving three-dimensional DEM modeling methods for irregularly shaped particles and their assembly[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1273–1281. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201707018.htm
    [22]
    ZOU Q S, HE X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591–1598.
    [23]
    CARMAN P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: S32–S48.
    [24]
    KOPONEN A, KATAJA M, TIMONEN J. Permeability and effective porosity of porous media[J]. Physical Review E, 1997, 56(3): 3319–3325.
    [25]
    CHAPUIS R P. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio[J]. Canadian Geotechnical Journal, 2004, 41(5): 787–795.
  • Related Articles

    [1]SHEN Linfang, LÜ Qianwen, LIU Wenlian, ZHANG Jiaming, YANG Hongzhong, LI Ze. Numerical study on permeability properties of three-dimensional rock fracture under coupled stress-seepage-dissolution process[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 428-437. DOI: 10.11779/CJGE20231061
    [2]HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772
    [3]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [4]LI Kai, ZHANG Ding-wen, CAO Zhi-guo. Effects of carbonation on permeability characteristics of cement-stabilized/ solidified lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 117-120. DOI: 10.11779/CJGE2019S2030
    [5]LIU Wu, ZHANG Zhen-hua, YE Xiao-dong, CHEN Yi-feng. Multi-scale permeability evolution model for layered rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 68-72. DOI: 10.11779/CJGE2018S2014
    [6]ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
    [7]XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. DOI: 10.11779/CJGE201701017
    [8]SHENG Jin-chang, WAN Fan, ZHANG Xia, LI Feng-bin, HUANG Qing-fu. Lattice Boltzmann method for rough fracture seepage characteristics of rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1213-1217. DOI: 10.11779/CJGE201407004
    [9]LI Jian, ZHAO Cheng-gang, HUANG Qi-di. Constitutive modeling with double-scale pore structure for coupling of capillary hysteresis and stress-strain behaviours in unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2127-2133.
    [10]SHAO Shengjun, LI Jianjun, YANG Fuyin. Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 59-65.
  • Cited by

    Periodical cited type(4)

    1. 罗仁宇,李奇志,祖公博,黄云进,杨耿超,姚清河. 基于卷积神经网络的超分辨率格子Boltzmann方法研究. 力学学报. 2024(12): 3612-3624 .
    2. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
    3. 陈经明,周泽超,陈茜茜,李寻,罗跃. 酸法地浸采铀多井系统中渗透系数时空演化模拟. 有色金属科学与工程. 2022(03): 106-116 .
    4. 吴志平,刘波平,王康,李石滨,胡毕炜,胡必伟,游杰. 基于高性能计算的离散介质冲击过程. 计算机与现代化. 2022(10): 41-46 .

    Other cited types(8)

Catalog

    Article views (221) PDF downloads (139) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return