• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772
Citation: HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772

Prediction model for soil permeability based on fractal characteristics of particles

More Information
  • Received Date: June 16, 2022
  • Available Online: February 26, 2023
  • In order to predict the permeability characteristics of soils, a fractal recognition algorithm of soil particles and a seepage channel reconstruction algorithm are proposed based on the microstructure, and a Monte Carlo prediction model for permeability coefficient of soils is established by combining the geometric reconstruction model with the finite element method. Firstly, according to the microstructural characteristics of soils, the ellipticity, roughness, gradation, porosity and long-axis angle of soil particles are identified by the fractal characteristic identification method. Then, based on these characteristic parameters, the fractal channel reconstruction method is used to reconstruct the microstructural model. Based on the generated microstructure model, the finite element method and the Monte Carlo method are combined to calculate the permeability coefficient with statistical significance. Compared with the experimental results, the rationality of the prediction model is verified (the error is less than 5%). Through the multi-factor analysis, the influences of ellipticity, roughness, gradation, porosity and long-axis angle on permeability coefficient of soils are studied. The order of magnitude relationship is gradation > porosity > long-axis dip angle > ellipticity > roughness. The pearson correlation coefficients are -0.3512, 0.3065, -0.101, -0.042 and -0.010, respectively. Through the analysis of the seepage channel, it is found that the "width" and "tortuosity" of the seepage channel are mainly affected by the gradation and porosity. The ovality, roughness and long axis dip angle mainly affect the "angle" and "length" of the seepage channel.
  • [1]
    孔令伟, 李新明, 田湖南. 砂土渗透系数的细粒效应与其状态参数关联性[J]. 岩土力学, 2011, 32(增刊2): 21-26, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2004.htm

    KONG Lingwei, LI Xinming, TIAN Hunan. Effect of fines content on permeability coefficient of sand and its correlation with state parameters[J]. Rock and Soil Mechanics, 2011, 32(S2): 21-26, 41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2004.htm
    [2]
    朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. doi: 10.11779/CJGE201510023

    ZHU Jungao, GUO Wanli, WANG Yuanlong, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936. (in Chinese) doi: 10.11779/CJGE201510023
    [3]
    丁林楠, 李国英. 基于分形级配方程的堆石料颗粒破碎SBG模型[J]. 岩土工程学报, 2022, 44(2): 264-270. doi: 10.11779/CJGE202202007

    DING Linnan, LI Guoying. SBG model for particle breakage of rockfills based on fractal gradation equation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 264-270. (in Chinese) doi: 10.11779/CJGE202202007
    [4]
    PANDEY P, LYNCH K, SIVAKUMAR V, et al. Measurements of permeability of saturated and unsaturated soils[J]. Géotechnique, 2021, 71(2): 170-177. doi: 10.1680/jgeot.19.P.058
    [5]
    陶高梁, 孔令伟. 基于微观孔隙通道的饱和/非饱和土渗透系数模型及其应用[J]. 水利学报, 2017, 48(6): 702-709. doi: 10.13243/j.cnki.slxb.20160993

    TAO Gaoliang, KONG Lingwei. A model for determining the permeability coefficient of saturated and unsaturated soils based on micro pore channel and its application[J]. Journal of Hydraulic Engineering, 2017, 48(6): 702-709. (in Chinese) doi: 10.13243/j.cnki.slxb.20160993
    [6]
    金毅, 王俏俏, 董佳斌, 等. 颗粒填充型分形孔隙结构复杂组构表征[J]. 岩石力学与工程学报, 2022, 41(6): 1160-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202206008.htm

    JIN Yi, WANG Qiaoqiao, DONG Jiabin, et al. Characterization of the complexity assembly of fractal bed-packing porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(6): 1160-1171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202206008.htm
    [7]
    金磊, 曾亚武, 程涛, 等. 基于格子Boltzmann方法的土石混合体的渗流特性研究[J]. 岩土工程学报, 2022, 44(4): 669-677. doi: 10.11779/CJGE202204009

    JIN Lei, ZENG Yawu, CHENG Tao, et al. Seepage characteristics of soil-rock mixture based on lattice Boltzmann method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 669-677. (in Chinese) doi: 10.11779/CJGE202204009
    [8]
    LIU Y F, JENG D S. Pore scale study of the influence of particle geometry on soil permeability[J]. Advances in Water Resources, 2019, 129: 232-249. doi: 10.1016/j.advwatres.2019.05.024
    [9]
    QAJAR J, ARNS C H. Chemically induced evolution of morphological and connectivity characteristics of pore space of complex carbonate rock via digital core analysis[J]. Water Resources Research, 2022, 58(3): 1-30.
    [10]
    ORTEGA-RAMÍREZ M P, OXARANGO L. Effect of X-ray CT resolution on the computation of permeability and dispersion coefficient for granular soils[J]. Transport in Porous Media, 2021, 137(2): 307-326.
    [11]
    费锁柱, 谭晓慧, 孙志豪, 等. 基于微结构模拟的土体自相关距离分析[J]. 岩土力学, 2019, 40(12): 4751-4758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912023.htm

    FEI Suozhu, TAN Xiaohui, SUN Zhihao, et al. Analysis of autocorrelation distance of soil based on microstructure simulation[J]. Rock and Soil Mechanics, 2019, 40(12): 4751-4758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912023.htm
    [12]
    LI K Q, LI D Q, LI P T, et al. Meso-mechanical investigations on the overall elastic properties of multi-phase construction materials using finite element method[J]. Construction and Building Materials, 2019, 228: 116727.
    [13]
    黄献文, 姚直书, 王伟, 等. 考虑块石长轴倾角和土石接触面的土石混合体边坡稳定性分析[J]. 工程科学与技术, 2021, 53(1): 47-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202101006.htm

    HUANG Xianwen, YAO Zhishu, WANG Wei, et al. Stability analysis of the soil–rock slope considering long axis inclination and soil–rock interface[J]. Advanced Engineering Sciences, 2021, 53(1): 47-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202101006.htm
    [14]
    CHEN Z L, WANG N T, SUN L, et al. Prediction method for permeability of porous media with tortuosity effect based on an intermingled fractal units model[J]. International Journal of Engineering Science, 2017, 121: 83-90.
    [15]
    SUN J C. Permeability of particle soils under soil pressure[J]. Transport in Porous Media, 2018, 123(2): 257-270.
    [16]
    王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203016.htm

    WANG Haiman, NI Wankui. Prediction model of saturated/unsaturated permeability coefficient of compacted loess with different dry densities[J]. Rock and Soil Mechanics, 2022, 43(3): 729-736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203016.htm
    [17]
    丁小刚, 余云燕, 蔺文博, 等. 非饱和弱膨胀土土-水特征曲线拟合与渗透系数模型预测[J]. 中南大学学报(自然科学版), 2022, 53(1): 361-370. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201018.htm

    DING Xiaogang, YU Yunyan, LIN Wenbo, et al. Fitting of soil-water characteristic curve and prediction of permeability coefficient model of unsaturated weak expansive soil[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 361-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202201018.htm
    [18]
    丁瑜, 饶云康, 倪强, 等. 颗粒级配与孔隙比对粗粒土渗透系数的影响[J]. 水文地质工程地质, 2019, 46(3): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903015.htm

    DING Yu, RAO Yunkang, NI Qiang, et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 108-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903015.htm
    [19]
    XU S L, ZHU Y Z, CAI Y Q, et al. Predicting the permeability coefficient of polydispersed sand via coupled CFD–DEM simulations[J]. Computers and Geotechnics, 2022, 144: 104634.
    [20]
    ASSOULINE S, OR D. Anisotropy factor of saturated and unsaturated soils[J]. Water Resources Research, 2006, 42(12): 1-11.
    [21]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Test Methods: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22]
    MA G, WANG Y H, ZHOU H, et al. Morphology characteristics of the fragments produced by rock grain crushing[J]. International Journal of Geomechanics, 2022, 22(4): 1-12.
    [23]
    LI K Q, LI D Q, LIU Y. Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119383.
    [24]
    张宜健. 不同粒径级砂性土渗透特性试验研究[D]. 西安: 西安建筑科技大学, 2013.

    ZHANG Yijian. Investigation on Permeability of Sands with Different Particle Size[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. (in Chinese)
  • Related Articles

    [1]Discrete element analysis of macro- and micro- mechanical properties of methane hydrate bearing clay under different salinity[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231117
    [2]YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
    [3]ZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, ZHOU Jia-wen, MENG Qing-xiang, ZHOU Meng-jia. Discrete element simulation of large-scale triaxial tests on soil-rock mixtures based on flexible loading of confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1545-1554. DOI: 10.11779/CJGE201908020
    [4]JIANG Ming-jing, LIAO You-bin, LIU Wei, TAN Ya-fei-ou. DEM simulation of mechanical behaviour of cemented sand under normal distribution of cementation strength[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 1-6. DOI: 10.11779/CJGE2016S2001
    [5]JIANG Ming-jing, FU Chang, LIU Jing-de, ZHANG Fu-guang. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. DOI: 10.11779/CJGE201601015
    [6]JIANG Ming-jing, LI Lei, ZHOU Ya-ping. Bearing properties of deep-sea methane hydrate-bearing foundation by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 343-350. DOI: 10.11779/CJGE201502019
    [7]JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.
    [8]Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [9]LIU Shiqi, LI Haibo, LI Junru. Mechanical properties of rock material under dynamic uniaxial tension[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1904-1907.
    [10]ZHANG Hongwu, QIN Jianmin. Simulation of mechanical behaviors of granular materials by discrete element method based on mesoscale nonlinear contact law[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1964-1969.

Catalog

    Article views (482) PDF downloads (177) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return