• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
Citation: YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830

Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine

More Information
  • Received Date: July 02, 2022
  • Available Online: March 05, 2023
  • The factors such as rainfall evaporation and groundwater fluctuation in Sichuan Province of China seriously affect the stability of slope engineering in the area. The deterioration laws of physical and mechanical parameters of saturated sandstone after different drying-wetting cycles (0, 5, 10 and 20 times) in brine (5%NaCl) solution are analyzed by conducting the triaxial compression tests. The damage mechanisms of the brine and drying-wetting cycles on saturated sandstone are revealed. The results show that the sandstone mass increases first and then decreases, while the permeability decreases first and then increases with the increase of the number of drying-wetting cycles. The threshold value for the mass change rate and permeability is 5 drying-wetting cycles. The peak strength, internal friction angle, cohesion and elastic modulus of the samples after drying-wetting cycles are all smaller than those of the dry sandstone. The peak strength and cohesion of the samples decrease gradually, while the internal friction angle decreases first and then increases with the increase of the cycles. The elastic modulus of the samples shows different trends with the increase of the confining pressure. The drying-wetting cycles have no significant effects on the failure mode of the sandstone, that is, the samples under uniaxial and triaxial compressions exhibit axial splitting and shear failure respectively. In the process of drying-wetting cycles, the mineral particles in the sandstone are gradually lost, resulting in the increase of the internal pores, which is the fundamental cause of inducing rock damage.
  • [1]
    胡泽铭. 四川红层地区缓倾角滑坡成因机理研究[D]. 成都: 成都理工大学, 2013.

    HU Zeming. Study on Genesis Mechanism of Slow Dip Slope Landslide in Sichuan Red Bed Area[D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese)
    [2]
    RIEMER W. Landslides and reservoirs[C]// Proceedings of the 6th International Symposium Landslides. Rotterdam: BalkemaA. A, 1995, 1973-2004.
    [3]
    崔凯, 顾鑫, 吴国鹏, 等. 不同条件下贺兰口岩画载体变质砂岩干湿损伤特征与机制研究[J]. 岩石力学与工程学报, 2021, 40(6): 1236-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106014.htm

    CUI Kai, GU Xin, WU Guopeng, et al. Dry-wet damage characteristics and mechanism of metamorphic sandstone carrying Helan mouth's rock paintings under different conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1236-1247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106014.htm
    [4]
    ZHANG Z, JIANG Q, ZHOU C, et al. Strength and failure characteristics of Jurassic Red-Bed sandstone under cyclic wetting-drying conditions[J]. Geophysical Journal International, 2014, 198(2): 1034-1044. doi: 10.1093/gji/ggu181
    [5]
    刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. doi: 10.11779/CJGE201607017

    LIU Xinrong, LI Dongliang, ZHANG Liang, et al. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. (in Chinese) doi: 10.11779/CJGE201607017
    [6]
    朱江鸿, 韩淑娴, 童艳梅, 等. 干湿循环对不同密度砂岩强度劣化的影响[J]. 华南理工大学学报(自然科学版), 2019, 47(3): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm

    ZHU Jianghong, HAN Shuxian, TONG Yanmei, et al. Effect of dry-wet cycles on the deterioration of sandstone with various initial dry densities[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(3): 126-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm
    [7]
    周翠英, 邓毅梅, 谭祥韶, 等. 饱水软岩力学性质软化的试验研究与应用[J]. 岩石力学与工程学报, 2005, 24(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm

    ZHOU Cuiying, DENG Yimei, TAN Xiangshao, et al. Experimental research on the softening of mechanical properties of saturated soft rocks and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 33-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501005.htm
    [8]
    崔凯, 吴国鹏, 王秀丽, 等. 不同水岩作用下板岩物理力学性质劣化实验研究[J]. 工程地质学报, 2015, 23(6): 1045-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506002.htm

    CUI Kai, WU Guopeng, WANG Xiuli, et al. Drying-wetting- saturating experiments for deterioration of physical and mechanical properties of slate[J]. Journal of Engineering Geology, 2015, 23(6): 1045-1052. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506002.htm
    [9]
    刘新荣, 王子娟, 傅晏, 等. 考虑干湿循环作用泥质砂岩的强度与破坏准则研究[J]. 岩土力学, 2017, 38(12): 3395-3401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712001.htm

    LIU Xinrong, WANG Zijuan, FU Yan, et al. Strength and failure criterion of argillaceous sandstone under dry-wet cycles[J]. Rock and Soil Mechanics, 2017, 38(12): 3395-3401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712001.htm
    [10]
    刘新荣, 袁文, 傅晏, 等. 干湿循环作用下砂岩溶蚀的孔隙度演化规律[J]. 岩土工程学报, 2018, 40(3): 527-532. doi: 10.11779/CJGE201803017

    LIU Xinrong, YUAN Wen, FU Yan, et al. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 527-532. (in Chinese) doi: 10.11779/CJGE201803017
    [11]
    YUAN W, LIU X, FU Y. Chemical thermodynamics and chemical kinetics analysis of sandstone dissolution under the action of dry–wet cycles in acid and alkaline environments[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 793-801.
    [12]
    SUN Q, ZHANG Y. Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone[J]. Engineering Geology, 2019, 248: 70-79.
    [13]
    刘新喜, 李玉, 王玮玮, 等. 干湿循环作用下预制裂隙炭质页岩力学特性及强度准则研究[J]. 岩石力学与工程学报, 2022, 41(2): 228-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202002.htm

    LIU Xinxi, LI Yu, WANG Weiwei, et al. Mechanical properties and strength criteria of prefabricated fractured carbonaceous shale under wetting and drying cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2): 228-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202202002.htm
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views (311) PDF downloads (116) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return