Citation: | ZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, ZHOU Jia-wen, MENG Qing-xiang, ZHOU Meng-jia. Discrete element simulation of large-scale triaxial tests on soil-rock mixtures based on flexible loading of confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1545-1554. DOI: 10.11779/CJGE201908020 |
[1] |
油新华. 土石混合体的随机结构模型及其应用研究[D]. 北京: 北京交通大学, 2002.
(YOU Xin-hua.Stochastic structural model of the earth-rock aggregate and its application[D]. Beijing: Beijing Jiaotong University, 2002. (in Chinese)) |
[2] |
孙华飞, 鞠杨, 王晓斐, 等. 土石混合体变形破坏及细观机理研究的进展[J]. 中国科学: 技术科学, 2014, 44(2): 172-181.
(SUN Hua-fei, JU Yang, WANG Xiao-fei, et al.Review of the study on deformation, failure and the mesomechanisms of rock-soil mixture (RSM)[J]. Scientia Sinica: Technologica, 2014, 44(2): 172-181. (in Chinese)) |
[3] |
王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(1): 112-123.
(WANG Yu, LI Xiao, HAO Jian-ming, et al.Research status and prospect of rock and soil aggregate[J]. Journal of Engineering Geology, 2014, 22(1): 112-123. (in Chinese)) |
[4] |
夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 2031-2039.
(XIA Jia-guo, HU Rui-lin, QI Sheng-wen, et al.Large-scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2031-2039. (in Chinese)) |
[5] |
王江营, 曹文贵, 蒋中明, 等. 不同应力路径下土石混填体变形力学特性大型三轴试验研究[J]. 岩土力学, 2016, 37(2): 424-430.
(WANG Jiang-ying, CAO Wen-gui, JIANG Zhong-ming, et al.Large-scale triaxial tests on deformation and mechanical behavior of soil-rock aggregate mixture under different stress paths[J]. Rock and Soil Mechanics, 2016, 37(2): 424-430. (in Chinese)) |
[6] |
金磊, 曾亚武, 张森. 块石含量及形状对胶结土石混合体力学性能影响的大型三轴试验[J]. 岩土力学, 2017, 38(1): 141-149.
(JIN Lei, ZENG Ya-wu, ZHANG Sen.Large scale triaxial tests on effects of rock block proportion and shape on mechanical properties of cemented soil-rock mixture[J]. Rock and Soil Mechanics, 2017, 38(1): 141-149. (in Chinese)) |
[7] |
金磊, 曾亚武, 李欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟[J]. 岩土工程学报, 2015, 37(5): 829-838.
(JIN Lei, ZENG Ya-wu, LI Huan, et al.Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 829-838. (in Chinese)) |
[8] |
王新. 土石混合体力学特性影响因素及破坏机制研究[D]. 武汉: 长江科学院, 2010.
(WANG Xin.Research on influence factors of mechanical characteristics and failure mechanism of soil-rock mixture[D]. Wuhan: Yangtze River Scientific Research Institute, 2010. (in Chinese)) |
[9] |
张强, 汪小刚, 赵宇飞, 等. 不同围压加载方式下土石混合体变形破坏机制颗粒流模拟研究[J]. 岩土工程学报, 2018, 40(11): 2051-2060.
(ZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, et al.Particle flow modelling of deformation and failure mechanism of soil-rock mixture under different loading modes of confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2051-2060. (in Chinese)) |
[10] |
ZHAO X L, EVANS T M.Discrete simulations of laboratory loading conditions[J]. International Journal of Geomechanics, 2009, 9(4): 169-178.
|
[11] |
DE B J P, MCDOWELL G R, WANATOWSKI D. Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures[J]. Géotechnique Letters, 2012, 2(2): 199-203.
|
[12] |
CIL M B, ALSHIBLI K A.3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary[J]. Acta Geotechnica, 2014, 9(2): 287-298.
|
[13] |
金磊, 郑亚武. 基于三维柔性薄膜边界的土石混合体大型三轴试验颗粒离散元模拟[J]. 岩土工程学报, 2018, 40(12): 2296-2304.
(JIN Lei, ZHENG Ya-wu.Numerical simulation of large-scale triaxial test on soil-rock mixture using DEM with three-dimensional flexible membrane boundary[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2296-2304. (in Chinese)) |
[14] |
XU W J, HU L M, GAO W.Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 86: 166-178.
|
[15] |
张强. 大型冰水滑坡堆积体工程力学特性及应用研究[D]. 南京: 河海大学, 2016.
(ZHANG Qiang.Study on engineering mechanical properties of large-scale outwash landslide deposits and its application[D]. Nanjing: Hohai University, 2016. (in Chinese)) |
[16] |
徐文杰, 王识. 基于真实块石形态的土石混合体细观力学三维数值直剪试验研究[J]. 岩石力学与工程学报, 2016, 35(10): 2152-2160.
(XU Wen-jie, WANG Shi.Meso- mechanics of soil-rock mixture with real shape of rock blocks based on 3D numerical direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2152-2160. (in Chinese)) |
[17] |
MEDLEY E W.The engineering characterization of mélanges and similar block-in-matrix rocks(bimrocks)[D]. Berkeley: University of California, 1994.
|
[18] |
Itasca Consulting Group Inc. PFC 5.0 help manual[M]. Minneapolis: Itasca Consulting Group Inc, 2014.
|
[19] |
XU W J, XU Q, HU R L.Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics & Mining Sciences, 2011,48(8): 1235-1247.
|
[20] |
HALL S A, BORNERT M, DESRUES J, et al.Discrete and continuum analysis of localized deformation in sand using X-ray CT and volumetric digital image correlation[J]. Géotechnique, 2010, 60(5): 11-20.
|
[1] | A discrete element simulation method of clayey grain-cementing type methane hydrate bearing sediment accounting for pore size and physicochemical properties[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240845 |
[2] | LI Anjun, LIU Peng, ZHANG Jing, WANG Shiji, LI Xian, MEI Likui, NIU Zuopeng. Experimental study on mechanical properties of sandy clayey purple soil cemented by a new EICP grouting method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2429-2438. DOI: 10.11779/CJGE20230796 |
[3] | Shear strength and cementation characteristics of interface between microbial mortar and rock[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240253 |
[4] | ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021 |
[5] | ZHANG Fu-guang, NIE Zhuo-chen, CHEN Meng-fei, FENG Huai-ping. DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 456-464. DOI: 10.11779/CJGE202103008 |
[6] | JIANG Ming-jing, SHI An-ning, LIU Jun, ZHANG Fu-guang. Three-dimensional distinct element analysis of mechanical properties of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 1-4. DOI: 10.11779/CJGE2019S2001 |
[7] | ZHANG Fu-guang, JIANG Ming-jing. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1424-1432. DOI: 10.11779/CJGE201808007 |
[8] | JIANG Ming-jing, ZHANG Wang-cheng, SUN Yu-gang, ZHANG Fu-guang. Mechanical behavior and shear band formation in idealized cemented sands by DEM[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2162-2169. |
[9] | JIANG Ming-jing, ZHANG Fu-guang, SUN Yu-gang, ZHANG Wang-cheng. DEM simulation of mechanical behaviour and bond breakage of different cemented sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 1969-1976. |
[10] | JIANG Ming-jing, SUN Yu-gang. Two-dimensional numerical investigation on bonding effect between particles of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1246-1253. |