Citation: | TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012 |
[1] |
王如宾, 徐卫亚, 王伟, 等. 坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律[J]. 岩石力学与工程学报, 2010, 29(5): 960–969. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005015.htm
WANG Ru-bin, XU Wei-ya, WANG Wei, et al. Experimental investigation on creep behaviors of hard rock in dam foundation and its seepage laws during complete process of rock creep[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 960–969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005015.htm
|
[2] |
EMMANUEL S, ANOVITZ L M, DAY-STIRRAT R J. Effects of coupled chemo-mechanical processes on the evolution of pore-size distributions in geological media[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 45–60. doi: 10.2138/rmg.2015.03
|
[3] |
张俊文, 宋治祥, 范文兵, 等. 应力–渗流耦合下砂岩力学行为与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(7): 1364–1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907007.htm
ZHANG Jun-wen, SONG Zhi-xiang, FAN Wen-bing, et al. Experimental study on mechanical behavior and permeability characteristics of sandstone under stress-seepage coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1364–1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907007.htm
|
[4] |
王彪, 赵瑞, 李云松, 等. 不同围压作用下川西高原地区岩石渗透率变化特性试验研究: 以巴郎山隧道为例[J]. 安全与环境工程, 2021, 28(3): 179–186. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202103024.htm
WANG Biao, ZHAO Rui, LI Yun-song, et al. Experimental study on variation characteristics of rock permeability under different confining pressures in western Sichuan plateau—taking balang mountain tunnel as an example[J]. Safety and Environmental Engineering, 2021, 28(3): 179–186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202103024.htm
|
[5] |
MA J, QUERCI L, HATTENDORF B, et al. The effect of mineral dissolution on the effective stress law for permeability in a tight sandstone[J]. Geophysical Research Letters, 2020, 47(15): 1–9. doi: 10.1029/2020GL088346
|
[6] |
李克钢, 杨宝威, 秦庆词. 基于核磁共振技术的白云岩卸荷损伤与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3493–3502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2024.htm
LI Ke-gang, YANG Bao-wei, QIN Qing-ci. Experimental study on unloading damage and permeability of dolomite based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3493–3502. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2024.htm
|
[7] |
CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 2010, 82(2): 375–384. doi: 10.1007/s11242-009-9432-z
|
[8] |
肖忠祥, 肖亮. 基于核磁共振测井和毛管压力的储层渗透率计算方法[J]. 原子能科学技术, 2008, 42(10): 868–871. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200810003.htm
XIAO Zhong-xiang, XIAO Liang. Method to calculate reservoir permeability using nuclear magnetic resonance logging and capillary pressure data[J]. Atomic Energy Science and Technology, 2008, 42(10): 868–871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200810003.htm
|
[9] |
CHI L, HEIDARI Z. Directional-permeability assessment in formations with complex pore geometry with a new nuclear-magnetic-resonance-based permeability model[J]. SPE Journal, 2016, 21(4): 1436–1449. doi: 10.2118/179734-PA
|
[10] |
肖亮, 刘晓鹏, 毛志强. 结合NMR和毛管压力资料计算储层渗透率的方法[J]. 石油学报, 2009, 30(1): 100–103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901021.htm
XIAO Liang, LIU Xiao-peng, MAO Zhi-qiang. A computation method for reservoir permeability by combining NMR log and capillary pressure data[J]. Acta Petrolei Sinica, 2009, 30(1): 100–103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901021.htm
|
[11] |
葛新民, 范宜仁, 邓少贵. 基于实验分析的泥质砂岩T2截止值确定方法研究[J]. 测井技术, 2011, 35(4): 308–313. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104005.htm
GE Xin-min, FAN Yi-ren, DENG Shao-gui. Research on T2 cutoff-value determination method for shaly sand based on experiments[J]. Well Logging Technology, 2011, 35(4): 308–313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104005.htm
|
[12] |
姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1): 181–189. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801023.htm
YAO Yan-bin, LIU Da-meng. Petrophysical properties and fluids transportation in gas shale: a NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181–189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801023.htm
|
[13] |
范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4): 1628–1638. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804036.htm
FAN Yi-ren, LIU Jian-yu, GE Xin-min, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of Geophysics, 2018, 61(4): 1628–1638. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804036.htm
|
[14] |
周尚文, 薛华庆, 郭伟, 等. 川南龙马溪组页岩核磁渗透率新模型研究[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 56–61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601008.htm
ZHOU Shang-wen, XUE Hua-qing, GUO Wei, et al. A new nuclear magnetic resonance permeability model of shale of Longmaxi Formation in southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1): 56–61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601008.htm
|
[15] |
AGHDA S M F, TASLIMI M, FAHIMIFAR A. Adjusting porosity and permeability estimation by nuclear magnetic resonance: a case study from a carbonate reservoir of south of Iran[J]. Journal of Petroleum Exploration and Production Technology, 2018, 8(4): 1113–1127. doi: 10.1007/s13202-018-0474-z
|
[16] |
ALGHAMDI T M, ARNS C H H, EYVAZZADEH R Y Y. Correlations between NMR-relaxation response and relative permeability from tomographic reservoir-rock images[J]. SPE Reservoir Evaluation & Engineering, 2013, 16(4): 369–377.
|
[17] |
MAO Z Q, XIAO L, WANG Z N, et al. Estimation of permeability by integrating nuclear magnetic resonance (NMR) logs with mercury injection capillary pressure (MICP) data in tight gas sands[J]. Applied Magnetic Resonance, 2013, 44(4): 449–468. doi: 10.1007/s00723-012-0384-z
|
[18] |
韩玉娇, 周灿灿, 范宜仁, 等. 基于孔径组分的核磁共振测井渗透率计算新方法: 以中东A油田生物碎屑灰岩储集层为例[J]. 石油勘探与开发, 2018, 45(1): 170–178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm
HAN Yu-jiao, ZHOU Can-can, FAN Yi-ren, et al. A new permeability calculation method using nuclear magnetic resonance logging based on pore sizes: a case study of bioclastic limestone reservoirs in the A oilfield of the Mid-East[J]. Petroleum Exploration and Development, 2018, 45(1): 170–178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm
|
[19] |
XU H J, LI C X, FAN Y R, et al. A new permeability predictive model based on NMR data for sandstone reservoirs[J]. Arabian Journal of Geosciences, 2020, 13(20): 1–10. doi: 10.1007/s12517-020-06055-6
|
[20] |
MU Y, HU Z M, CHANG J, et al. Effect of water occurrence on shale seepage ability[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108725. doi: 10.1016/j.petrol.2021.108725
|
[21] |
CHEN Y, LIU D M, CAI Y D, et al. Insights into fractal characteristics of pores in different rank coals by nuclear magnetic resonance (NMR)[J]. Arabian Journal of Geosciences, 2018, 11(19): 1–12. http://www.onacademic.com/detail/journal_1000040863343510_5780.html
|
[22] |
SHI J Q Q, DURUCAN S. Exponential growth in San Juan Basin fruitland coalbed permeability with reservoir drawdown: model match and new insights[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(6): 914–925.
|
[23] |
LI S, TANG D Z, PAN Z J, et al. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance[J]. Fuel, 2013, 111: 746–754. doi: 10.1016/j.fuel.2013.05.003
|
[24] |
ZHANG P F, LU S F, LI J Q, et al. Characterization of shale pore system: a case study of Paleogene Xin'gouzui Formation in the Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 321–334. doi: 10.1016/j.marpetgeo.2016.10.014
|
[25] |
闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法: 以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543–1552. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604034.htm
YAN Jian-ping, WEN Dan-ni, LI Zun-zhi, et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance(NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4): 1543–1552. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604034.htm
|
1. |
谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 .
![]() | |
2. |
杨帅,毛海涛,刘畅,王晓菊. 中高强混凝土抗压强度与气孔分布特征关系模型研究. 长江科学院院报. 2024(04): 194-202 .
![]() | |
3. |
林键,杨溢,曹广勇,刘洋,邵晚行. 静水压作用下砂岩渗透特性及渗透率模型改进. 地下空间与工程学报. 2024(03): 776-787 .
![]() |