Citation: | TAN Zhiyong, WANG Chaolin, LONG Anfa. Experimental study on rock damage frozen with liquid nitrogen under external water source[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 415-425. DOI: 10.11779/CJGE20221337 |
[1] |
周洁, 李泽垚, 万鹏, 等. 组合地层渗流对人工地层冻结法及周围工程环境效应的影响[J]. 岩土工程学报, 2021, 43(3): 471-480. doi: 10.11779/CJGE202103010
ZHOU Jie, LI Zeyao, WAN Peng, et al. Effects of seepage in clay-sand composite strata on artificial ground freezing and surrounding engineering environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 471-480. (in Chinese) doi: 10.11779/CJGE202103010
|
[2] |
陈瑞杰, 程国栋, 李述训, 等. 人工地层冻结应用研究进展和展望[J]. 岩土工程学报, 2000, 22(1): 40-44. http://cge.nhri.cn/cn/article/id/10448
CHEN Ruijie, CHENG Guodong, LI Shuxun, et al. Development and prospect of research on application of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 40-44. (in Chinese) http://cge.nhri.cn/cn/article/id/10448
|
[3] |
汪恩良, 任志凤, 韩红卫, 等. 超低温冻结黏土单轴抗压力学性质试验研究[J]. 岩土工程学报, 2021, 43(10): 1851-1860. doi: 10.11779/CJGE202110011
WANG Enliang, REN Zhifeng, HAN Hongwei, et al. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. (in Chinese) doi: 10.11779/CJGE202110011
|
[4] |
黄中伟, 位江巍, 李根生, 等. 液氮冻结对岩石抗拉及抗压强度影响试验研究[J]. 岩土力学, 2016, 37(3): 694-700, 834.
HUANG Zhongwei, WEI Jiangwei, LI Gensheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics, 2016, 37(3): 694-700, 834. (in Chinese)
|
[5] |
董新平, 于少辉, 张毅豪, 等. 地铁联络通道冻结法施工中涌水成因及防治[J]. 地下空间与工程学报, 2022, 18(1): 322-329, 340.
DONG Xinping, YU Shaohui, ZHANG Yihao, et al. The causes and prevention measures of water inflow at cross passage located in sandy gravel layers and constructed by artificial ground freezing[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(1): 322-329, 340. (in Chinese)
|
[6] |
蔡承政, 任科达, 杨玉贵, 等. 液氮压裂作用下页岩破裂特征试验研究[J]. 岩石力学与工程学报, 2020, 39(11): 2183-2203.
CAI Chengzheng, REN Keda, YANG Yugui, et al. Experimental research on shale cracking characteristics due to liquid nitrogen fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2183-2203. (in Chinese)
|
[7] |
ZHANG S K, HUANG Z W, ZHANG H Y, et al. Experimental study of thermal-crack characteristics on hot dry rock impacted by liquid nitrogen jet[J]. Geothermics, 2018, 76: 253-260. doi: 10.1016/j.geothermics.2018.08.002
|
[8] |
GAO F, CAI C Z, YANG Y G. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions[J]. Results in Physics, 2018, 9: 252-262. doi: 10.1016/j.rinp.2018.02.061
|
[9] |
MATSUOKA N. Mechanisms of rock breakdown by frost action: an experimental approach[J]. Cold Regions Science and Technology, 1990, 17(3): 253-270. doi: 10.1016/S0165-232X(05)80005-9
|
[10] |
CAI C Z, LI G S, HUANG Z W, et al. Experimental study of the effect of liquid nitrogen cooling on rock pore structure[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 507-517. doi: 10.1016/j.jngse.2014.08.026
|
[11] |
NAKAMURA D, GOTO T, ITO Y, et al. A basic study on frost susceptibility of rock: differences between frost susceptibility of rock and soil[C]//Cold Regions Engineering 2009. Duluth, 2009.
|
[12] |
何玉红. 单轴荷载下砂岩波速特征与损伤演化规律研究[J]. 地下空间与工程学报, 2016, 12(1): 44-48.
HE Yuhong. Research on ultrasonic velocity properties and damage development of sandstone under uniaxial compression[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(1): 44-48. (in Chinese)
|
[13] |
杨更社, 张全胜, 蒲毅彬. 冻结温度对岩石细观损伤扩展特性影响研究初探[J]. 岩土力学, 2004, 25(9): 1409-1412.
YANG Gengshe, ZHANG Quansheng, PU Yibin. Preliminary study on meso-damage propagation characteristics of rock under condition of freezing temperature[J]. Rock and Soil Mechanics, 2004, 25(9): 1409-1412. (in Chinese)
|
[14] |
LI S, TANG D Z, PAN Z J, et al. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance[J]. Fuel, 2013, 111: 746-754. doi: 10.1016/j.fuel.2013.05.003
|
[15] |
田佳丽, 王惠民, 刘星星, 等. 基于NMR耦合实时渗流的砂岩渗透特性研究[J]. 岩土工程学报, 2022, 44(9): 1671-1678, 8. doi: 10.11779/CJGE202209012
TIAN Jiali, WANG Huimin, LIU Xingxing, et al. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678, 8. (in Chinese) doi: 10.11779/CJGE202209012
|
[16] |
余玥, 孙一迪, 高睿, 等. 基于T2截止值确定致密岩心表面弛豫率[J]. 石油实验地质, 2022, 44(2): 342-349.
YU Yue, SUN Yidi, GAO Rui, et al. Determination of surface relaxivity for tight sandstone cores based on T2 cut-off value[J]. Petroleum Geology & Experiment, 2022, 44(2): 342-349. (in Chinese)
|
[17] |
闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法: 以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543-1552.
YAN Jianping, WEN Danni, LI Zunzhi, et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance(NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4): 1543-1552. (in Chinese)
|
[18] |
王怀栋. 超低温液氮条件下页岩脆性破裂机理研究[D]. 东营: 中国石油大学(华东), 2017.
WANG Huaidong. Study on Mechanism of Brittle Fracture of Shale under Super-low Temperature Condition of Liquid Nitrogen[D]. Dongying: China University of Petroleum (Huadong), 2017. (in Chinese)
|
[19] |
GILPIN R R. A model for the prediction of ice lensing and frost heave in soils[J]. Water Resources Research, 1980, 16(5): 918-930. doi: 10.1029/WR016i005p00918
|
[20] |
高玉佳, 王清, 陈慧娥, 等. 温度对季节性冻土水分迁移的影响研究[J]. 工程地质学报, 2010, 18(5): 698-702.
GAO Yujia, WANG Qing, CHEN Hui′e, et al. Effect of temperature on migration of water in seasonal frozen soils[J]. Journal of Engineering Geology, 2010, 18(5): 698-702. (in Chinese)
|