• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006
Citation: ZHOU Li-pei, TANG Xiao-wu, CHENG Guan-chu, SUN Zu-feng. Influencing factors for calculating clay permeability using asymptotic expansion method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1205-1211. DOI: 10.11779/CJGE201807006

Influencing factors for calculating clay permeability using asymptotic expansion method

More Information
  • Received Date: April 12, 2017
  • Published Date: July 24, 2018
  • The determination of representative elemental volume (REV) directly affects the calculating accuracy in permeability calculation for clay using the asymptotic expansion method in geotechnical engineering. Using the sea clay as an example, the influencing factors are studied and compared. By contrasting the results of 4 different types of regular polygon models, and different unit arrangements which are parallel and staggered and different models in 2D and 3D, the calculated permeabilities show large deviations to the measured ones but little differences among each model. It is illustrated that the shape, arrangement and dimensions of the models have little influences in the calculating accuracy. The proposed elliptical particle combined with water film model (E-W model), which takes the consideration of the flattened shape of clay particles and the strong bound water wrapping around them, well improves the accuracy. The representativeness of the physical characteristics of the clay particles is the main influencing factor of REV. The calculated permeabilities of kaolin and illite clay also exhibit high accuracy, which shows that the E-W model can be widely used in the permeability calculation for clay using the asymptotic expansion method.
  • [1]
    ANDREASSEN E, ANDREASEN C S.How to determine composite materials properties using numerical homogenization[J]. Computational Materials Science, 2014, 83: 488-495.
    [2]
    KEIP M A, STEINMANN P, SCHRODER J.Two-scale computational homogenization of electro-elasticity at finite strains[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 62-79.
    [3]
    BEAR J.Dynamics of fluids in porous media[M]. New York: Dover Publications, 1988.
    [4]
    吉泽升, 朱荣凯, 李丹. 传输原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2002.
    (JI Ze-sheng, ZHU Rong-kai, LI Dan.Principle of transmission[M]. Harbin: Harbin Institute of Technology Press, 2002. (in Chinese))
    [5]
    严宗毅. 低雷诺数流理论[M]. 北京: 北京大学出版社, 2002.
    (YAN Zong-yi.Theory of low reynolds number flows[M]. Beijing: Peking University Press, 2002. (in Chinese))
    [6]
    DASGUPTA A, AGARWAL R K.Oithotropic thermal conductivity of plain-wave fabric composites using a homogenization technique[J]. Journal of Composite Materials 1992, 26(18): 2736-2758.
    [7]
    WANG J G, LEUNG C F, ICHIKAWA Y.A simplified homogenization method for composite soils[J]. Computers and Geotechnics, 2002, 29: 477-500.
    [8]
    TANG X W, CHENG G C, CHEN Y M.An-easy-to implement multi-scale computation of permeability coefficient for porous materials[J]. Microporous and Mesoporous Materials, 2010, 130(13): 274-279.
    [9]
    SUN Z F, TANG X W, CHENG G C.Inversion calculation of permeability coefficient with the multi-scale asymptotic expansion method[J]. Poromechanics V, ASCE, 2013: 2212-2221.
    [10]
    BELIAEV A Y, KOZLOV S M.Darcy equation for random porous media[J]. Communications on Pure and Applied Mathematics 1996, 49: 1-34.
    [11]
    ESPEDAL M S, FASANO A, MIKELIC A.Filtration in porous media and industrial application[M]// Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2000.
    [12]
    TAVENAS F, JEAN P, LEBLOND P, et al.The permeability of natural soft clays part II: permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
    [13]
    AL-TABBAA A, WOOD D M.Some measurements of the permeability of kaolin[J]. Géotechnique, 1987, 37(4): 499-514.
    [14]
    MESRI G.Mechanisms controlling the permeability of clays[J]. Clays and Clay minerals, 1971, 19: 151-158.
    [15]
    ASTM D2434. ASTM Annual book of standards[S]. Philadelphia: American Society for Testing & Materials, 2002.
    [16]
    ASTM D5084. ASTM Annual book of standards[S]. Philadelphia: American Society for Testing & Materials, 2002.
    [17]
    ASTM D5856. ASTM Annual book of standards[S]. Philadelphia: American Society for Testing & Materials, 2002.
    [18]
    龚晓南. 高等土力学[M]. 杭州: 浙江大学出版社, 1996.
    (GONG Xiao-nan.Advanced soil mechanics[M]. Hangzhou: Zhejiang University Press, 1996. (in Chinese))
    [19]
    BRADY N C, WEIL R R.The Nature and properties of soils[M]. New Jersey: Prentice Hall, 1974.
  • Related Articles

    [1]SUN Jiansheng. Theoretical model for limit equilibrium anti-sliding stability of stress vectors on three-dimensional sliding surface based on projection direction extreme principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2629-2641. DOI: 10.11779/CJGE20230949
    [2]REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012
    [3]ZENG Hong-yan, HAN Li-biao, ZHOU Cheng, LIU Wei, TAN Chang-ming. Model tests and numerical analysis of slopes reinforced by short anti-sliding piles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 132-136. DOI: 10.11779/CJGE2020S1026
    [4]LIU Hu-hu, MIAO Hai-bo, CHEN Zhi-wei, HUANG Jin-yong. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573-1580. DOI: 10.11779/CJGE201908024
    [5]CHEN Wen-wu, LIU Peng, LIU Wei, LIN Gao-chao, XU He. Suction tests on sliding soil in interface landslide based on filter paper method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 112-117. DOI: 10.11779/CJGE2018S1018
    [6]CHEN Qiong, XIANG Wei, CUI De-shan, LIU Qing-bing, ZHANG Qian. Adsorption of nitrogen and water vapor by sliding zone soils of Huangtupo landslide[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 691-696.
    [7]Approximate theoretical solution of distribution modes of landslide thrust on anti-sliding piles in soil-like slopes or landslides[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [8]LONG Jianhui, LI Tonglu, LEI Xiaofeng, YANG Sheqiang. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 289-293.
    [9]LI Dongtian, YU Yunhua. Layer analysis method for rock slope stability and the image and spectrum of slide resistance factor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 18-22.
    [10]Zhou Ruizhong. Regularity of Rock Bursts andits Analysis Based on Fracture Mechanics[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 111-117.
  • Cited by

    Periodical cited type(5)

    1. 楼晓明,孙逸玮,张蓟. 软土地基沟渠开挖诱发远处围堰失稳的实例分析. 水利水电技术(中英文). 2024(S1): 151-159 .
    2. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    3. 郭双枫,何嘉元,张志华,张鹏,李宁,朱锐. 双层土质滑坡临界滑动面判识与失稳机理研究. 防灾减灾工程学报. 2024(05): 1020-1029 .
    4. 穆保岗,王志强. 考虑坡顶裂隙分布特征的包山墙稳定性研究. 特种结构. 2023(02): 1-7 .
    5. 李生清. 基于GA-Sarma算法的边坡最不利滑裂面搜索方法. 地质与勘探. 2022(04): 887-894 .

    Other cited types(5)

Catalog

    Article views (303) PDF downloads (165) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return